
Surfaces in 3-manifolds 
and the Thurston norm

Margaret Nichols 
Fields Institute 

24 September 2021



Examples



Examples

1. Mapping torus               
 homeomorphism 

  

Mφ = S × [0, 1] / (x, 1) ∼ (φ(x), 0)
φ : S → S



Examples

1. Mapping torus               
 homeomorphism 

  

Mφ = S × [0, 1] / (x, 1) ∼ (φ(x), 0)
φ : S → S

φ



Examples

1. Mapping torus               
 homeomorphism 

  

2. Knot complements      

Mφ = S × [0, 1] / (x, 1) ∼ (φ(x), 0)
φ : S → S

S3 − K

φ



Examples

1. Mapping torus               
 homeomorphism 

  

2. Knot complements      

Mφ = S × [0, 1] / (x, 1) ∼ (φ(x), 0)
φ : S → S

S3 − K

φ



Examples

1. Mapping torus               
 homeomorphism 

  

2. Knot complements      

Mφ = S × [0, 1] / (x, 1) ∼ (φ(x), 0)
φ : S → S

S3 − K

φ



Motivation

Question: Why study ? S → M



Motivation

Question: Why study ? 

– Surfaces have easy geometry/topology 

S → M



Motivation

Question: Why study ? 

– Surfaces have easy geometry/topology 
 topology: (g,b,k) 

S → M

Sk
g,b



Motivation

Question: Why study ? 

– Surfaces have easy geometry/topology 
 topology: (g,b,k) 

geometry:  

S → M

Sk
g,b

χ(Sk
g,b) = 2 − 2g + b + k



Motivation

Question: Why study ? 

– Surfaces have easy geometry/topology 
 topology: (g,b,k) 

geometry:  
– Codimension one! 

S → M

Sk
g,b

χ(Sk
g,b) = 2 − 2g + b + k



Motivation

Question: Why study ? 

– Surfaces have easy geometry/topology 
 topology: (g,b,k) 

geometry:  
– Codimension one! 
– Classes in  have embedded representatives 

S → M

Sk
g,b

χ(Sk
g,b) = 2 − 2g + b + k

H2(M)



Motivation

Question: Why study ? 

– Surfaces have easy geometry/topology 
 topology: (g,b,k) 

geometry:  
– Codimension one! 
– Classes in  have embedded representatives 
– Homotopy promotes to geometry: 

S → M

Sk
g,b

χ(Sk
g,b) = 2 − 2g + b + k

H2(M)



Motivation

Question: Why study ? 

– Surfaces have easy geometry/topology 
 topology: (g,b,k) 

geometry:  
– Codimension one! 
– Classes in  have embedded representatives 
– Homotopy promotes to geometry: 

– Sphere theorem:  nontrivial  embedded separating 
sphere (reducing sphere) 

S → M

Sk
g,b

χ(Sk
g,b) = 2 − 2g + b + k

H2(M)

π2(M) ⇒



Motivation

Question: Why study ? 

– Surfaces have easy geometry/topology 
 topology: (g,b,k) 

geometry:  
– Codimension one! 
– Classes in  have embedded representatives 
– Homotopy promotes to geometry: 

– Sphere theorem:  nontrivial  embedded separating 
sphere (reducing sphere) 

– Kneser’s lemma:  kernel  embedded disk 
(compressing disk) 

S → M

Sk
g,b

χ(Sk
g,b) = 2 − 2g + b + k

H2(M)

π2(M) ⇒

π1(S) → π1(M) ⇒
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– Geometry lets us simplify : 

–  has a “prime factorization” into connect sum of 
irreducible pieces 

– Cut  along incompressible surfaces to get “smaller” 
pieces 

Geometrization (Thurston-Perelman). Any irreducible  admits 
a JSJ decomposition s.t. every resulting piece carries one of 
the eight homogeneous 3-dim’l geometries. 
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1. Mapping torus               
 homeomorphism 

  

Nielsen-Thurston Classification.  is isotopic to a homeo  
which is (at least one of): 

a. finite order:   ; 
  has  geometry 

b. reducible:     fixes a finite collection of scc; or 
 incompressible torus; JSJ decomposition 

c. pseudo-Anosov:     “mixes everything up”. 
 (Thurston)  has  geometry 

 is a fibered 3-manifold:   

Mφ = S × [0, 1] / (x, 1) ∼ (φ(x), 0)
φ : S → S

φ ψ

ψn = 1
⇒ Mφ ℍ2 × ℝ

ψ
⇒

ψ
⇒ Mφ ℍ3

Mφ S → Mφ → S1
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2. Knot complements      

Gordon-Luecke.  is determined by . 

Distinguishing knots is hard… but surfaces help! 

S3 − K

K S3 − K

If  is… 

Unknot 

Unlink* 

Composite knot 

Satellite knot 

then… 

Bounds  

Essential  

Ess.  meeting  twice 

Ess. incompressible 

K

D2

S2

S2 K

T2
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Obs. If  is knotted, it doesn’t bound a disk. 

Question: What is the simplest surface  bounds? 

Defn. A Seifert surface of a knot  is an orientable surface with 
boundary . 

Defn. The knot genus  is the minimum genus among 
Seifert surfaces of . 

K

K

K
K

g(K)
K
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Knot genus

Seifert’s algorithm gives a construction of a Seifert surface from 
a knot projection. 

Homologically: 
      (generated by a meridional loop) 
 

Any representative of a generator is a Seifert surface. 

Nb. All Seifert surfaces are homologous!

H1(S3 − K) ≅ ℤ
H2(S3 − K) ≅ ℤ
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Norm on H2(M, ∂M; ℝ)

Given , define                 (S, ∂S) ⊂ (M, ∂M)

 connectedS

The Thurston norm of  isα ∈ H2(M, ∂M; ℤ)

Example:  a Seifert surfaceS ⊂ S3 − K

χ−(S) = max{0, − χ(S)}

χ−(S) = χ−(S1) + χ−(S2) S = S1 ⊔ S2

∥α∥ = min
[S]=α

χ−(S)

∥[S]∥ = 2g(K) − 1
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What about ?

H2(S3 − L) ≅ ℤ2 = ⟨a, b⟩

∥a∥ = 1 ∥b∥ = 1

∥3a + 16b∥

Theorem (Thurston). The Thurston norm unit ball is a convex, 
rational polyhedron, symmetric about the origin, with integral 
lattice points as vertices. 

 Norm is additive on faces. 
. 

⇒
∥3a + 16b∥ = 19
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Theorem (Thurston). In the cone over the interior of a face of the 
Thurston norm unit ball, either every (integral) class is fibered, or 
none is. (Fibered faces) 

Example: All top dimensional faces of the Whitehead link are 
fibered, but the vertices are not.

a

b



Thurston norm

Defn.  is a fibered 
class if  is represented by  
realizing  as a mapping torus. 

 

α ∈ H2(M)
α S

M

S → M → S1

Theorem (Thurston). In the cone over the interior of a face of the 
Thurston norm unit ball, either every (integral) class is fibered, or 
none is. (Fibered faces) 

Question: When does the Thurston norm ball of  have a 
fibered face? 

M

a

b



Thurston norm

Defn.  is a fibered 
class if  is represented by  
realizing  as a mapping torus. 

 

α ∈ H2(M)
α S

M

S → M → S1

Theorem (Thurston). In the cone over the interior of a face of the 
Thurston norm unit ball, either every (integral) class is fibered, or 
none is. (Fibered faces) 

Question: When does the Thurston norm ball of  have a 
fibered face? 

(When is a knot fibered?)

M

a

b
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Virtual fibering

Defn.  is virtually (blank) if some finite cover of  is (blank). 

Question. How does the Thurston norm behave under finite 
covers? 

Not all classes lift, lifting classes may decrease in norm, new 
faces appear… 

…but it's not all chaos! 

Question’. When does the Thurston norm ball of some finite 
cover of  have a fibered face? 

Theorem (Agol-Wise). Every compact orientable irreducible 3-
manifold with infinite fundamental group is virtually fibered.

M M

M



Thank you!


