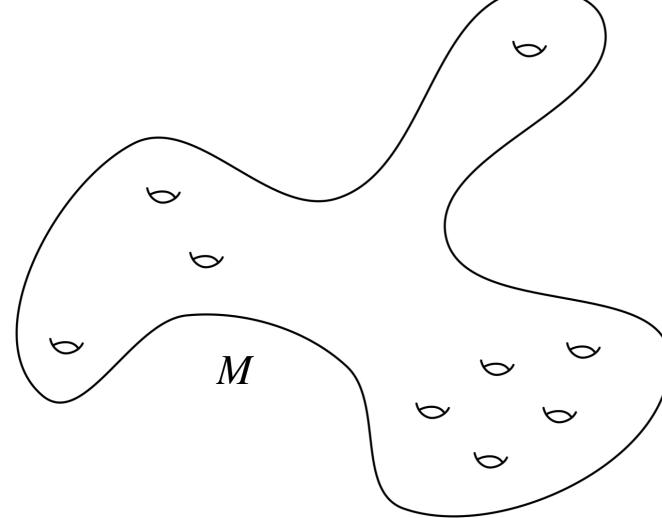
Taut sutured handlebodies as twisted homology products

Margaret Nichols University at Buffalo June 2021 A (codimension-1) *foliation* \mathcal{F} on M is a local product structure:



A foliation \mathcal{F} is *taut* if there exists a loop transversely intersecting every leaf.

Question: When does *M* admit taut foliation?

(v2) When is $S \subset M$ a closed leaf of a taut foliation?

Question (v2): When is $S \subset M$ a leaf of a taut foliation?

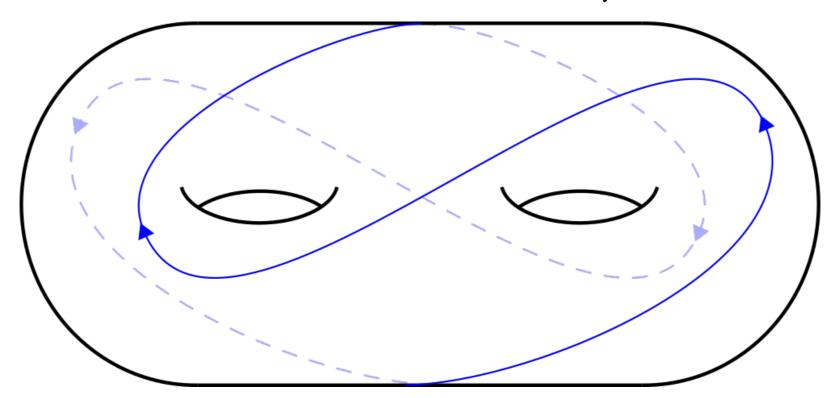
(Assume *M* closed or torus ∂ .)

A sutured manifold (M, R_{\pm}, γ) consists of:

M - 3-manifold (w. ∂)

 γ - disjoint collection of (oriented) scc in ∂M

 R_{\pm} - (oriented) subsurfaces of ∂M s.t. $\partial M = R_{+} \sqcup_{\gamma} R_{-}$



Example:
$$M = S^3 - K$$

 $S \subseteq M$ Seifert surface for K

Norm on $H_2(M, \partial M; \mathbb{R})$ Given $(S, \partial S) \subset (M, \partial M)$, define $\chi_-(S) = \max\{0, -\chi(S)\}$ S connected $\chi_-(S) = \chi_-(S_1) + \chi_-(S_2)$ S = $S_1 \sqcup S_2$

The Thurston norm of $\alpha \in H_2(M, \partial M; \mathbb{Z})$ is

 $\|\alpha\| = \min_{[S]=\alpha} \chi_{-}(S)$

Example: $S \subset S^3 - K$ a Seifert surface $\|[S]\| = 2g(K) - 1$ (M, R_{\pm}, γ) is *taut* if:

- M is irreducible
- R_{\pm} are incompressible in M
- R_{\pm} realize Thurston norm

Fact: *M* admits taut $\mathscr{F} \iff M - S$ is taut w. leaf *S*

Question: How can we can we certify a sutured manifold is taut?

Taut sutured handlebodies as twisted homology products

Margaret Nichols University at Buffalo June 2021

Question: How can we can we certify a sutured manifold is taut?

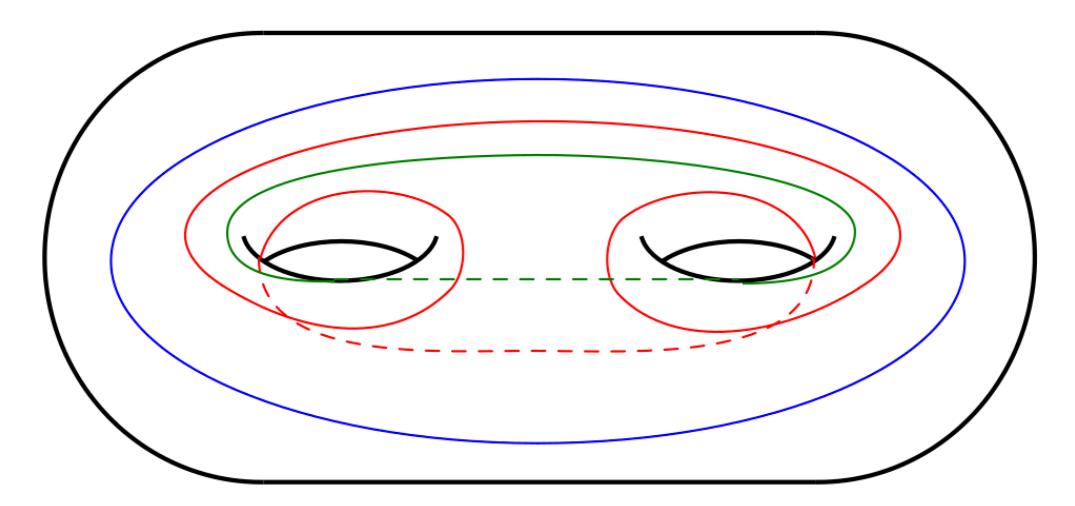
Obs. If *M* is a *product*, it is taut.

$$M \cong R_+ \times I \simeq R_+$$

Theorem (Friedl-Kim): If $i_* : H_*(R_{\pm}; \mathbb{Q}) \xrightarrow{\cong} H_*(M; \mathbb{Q})$, then *M* is taut.

M is a (Q-)homology product.

Example (N.): *M* is not a Q-homology product!



Generators of $\pi_1(R_+)$ have same image in $H_1(M)$.

Core idea: Homology groups which carry additional info from a representation $\alpha : \pi_1(M) \to \operatorname{GL}_n(\mathbb{C})$.

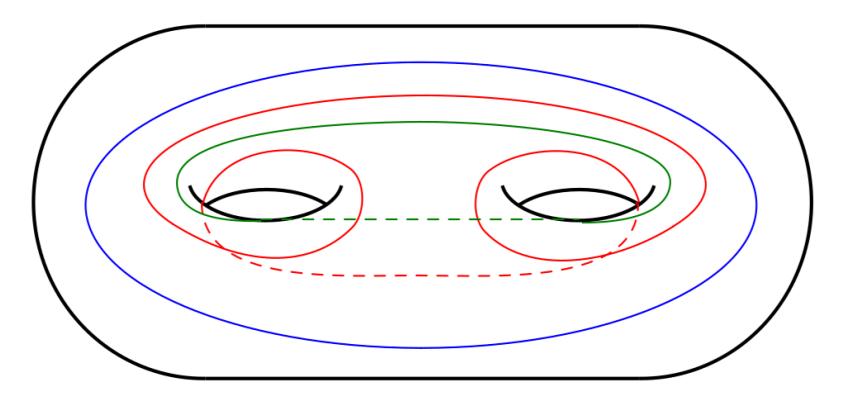
 $H_i(M; E_\alpha)$ is a $\mathbb{Z}[\pi_1(M)]$ -module.

Key fact: Every theorem about (co)homology still holds here.

Theorem (Friedl-Kim): If $i_* : H_*(R_{\pm}; E_{\alpha}) \xrightarrow{\cong} H_*(M; E_{\alpha})$, then *M* is taut.

M is an α -homology product.

Example (N.): *M* is not a Q-homology product...

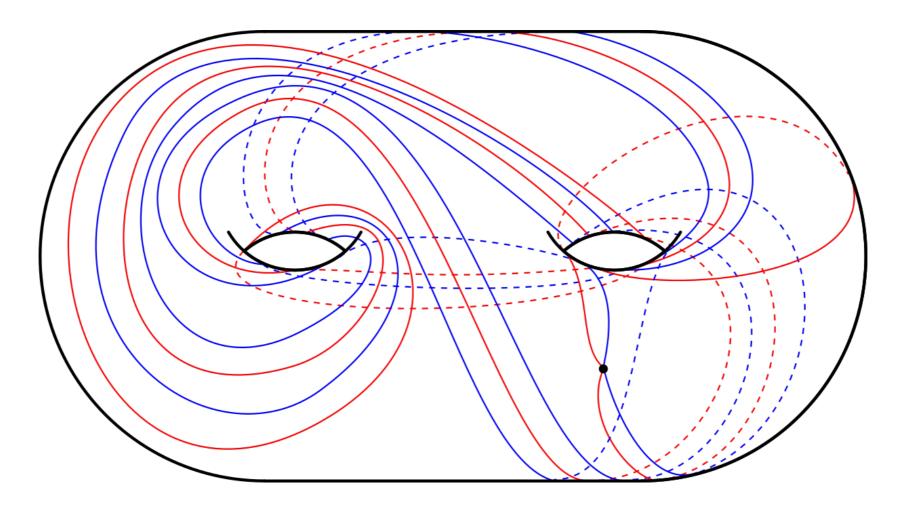


How much better is twisted homology?

Theorem (Friedl-Kim): If M is taut, there exists a rep $\alpha : \pi_1(M) \to \operatorname{GL}_n(\mathbb{C})$ such that M is an α -homology product.

The catch: The proof uses virtual fibering to produce a "good" representation.

Theorem (N.): For all $g \ge 2$, there exists a taut sutured genus g handlebody M which is not an α -homology product for any $\alpha : \pi_1(M) \to \operatorname{GL}_1(\mathbb{C})$.



Can we give a precise description of the complexity of a certifying rep?

What if we restrict the algebraic properties of the rep?

Theorem (N.): For all k, there exists a taut sutured handlebody M which is not an α -homology product for any representation $\alpha : \pi_1(M) \to \operatorname{GL}(V)$, with α solvable of degree $\leq k$.

Idea: Inductive construction; derived series.

Corollary (N.): For all n, there exists a taut sutured handlebody M which is not an α -homology product for any solvable representation $\alpha : \pi_1(M) \to \operatorname{GL}_n(\mathbb{C})$.

Remark: For M a handlebody, Friedl-Kim's construction gives a solvable representation!