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Abstract. Friedl and Kim show any taut sutured manifold can be realized as a twisted homology product,

but their proof gives no practical description of how complicated the realizing representation needs to be.

We give a number of results illustrating the relationship between the topology of a taut sutured handlebody

and the complexity of a representation realizing it as a homology product.

1. Introduction

A sutured 3-manifold (M,γ) is a manifold with boundary marked by a set of sutures, γ, which consists of

oriented curves dividing ∂M into oriented collections of components R+ and R−.1

Gabai [Gab84] introduced the notion of a taut sutured manifold (M,γ), which, roughly speaking, requires

M to be irreducible and the boundary components R± to be of minimal complexity.

Under suitable hypotheses, a sutured manifold is taut if R+ and R− realize the Thurston norm of their

(common) homology class. Here is an important example. Suppose K is a knot in S3, and let R be a Seifert

surface for K. Cutting S3 open along R produces a sutured manifold M whose boundary decomposes along

the knot K into two copies R± of R. This sutured manifold is taut precisely when R is of minimal genus.

Thus the theory of sutured manifolds can be (and is) used to compute knot genus.

Suppose M is a sutured manifold, and α : π1(M) → GL(V ) is a representation. Then α restricts to

representations π1(R±)→ GL(V ), and we can define the twisted homology groups H∗(M ;Eα), H∗(R±;Eα).

We say that M is an α-homology product if the maps H∗(R±;Eα) → H∗(M ;Eα) induced by inclusion are

all isomorphisms. If α is not specified, we say M is a twisted homology product.

This concept is important, because of

Theorem 1.1 (Friedl-Kim [FK13]). If M is a twisted homology product, it is taut.

Conversely, using Agol’s Virtual Fibering Theorem ([Ago08]), they show

Theorem 1.2 (Friedl-Kim [FK13]). If M is taut, it is a twisted homology product for some representation

α.

We call such an α certifying for M . The result of Friedl and Kim is not effective, in the sense that it gives

no upper or lower bounds for the complexity of a certifying representation. This potentially reduces the

practical value of twisted homology as a tool. Therefore, the fundamental question we study in this paper

addresses precisely this issue:

Question 1.3. If M is a taut sutured manifold, what is the simplest representation for which it is a twisted

homology product, and what is the relationship of the complexity of the representation to the topology of M?

For M a hyperbolic manifold, Agol and Dunfield found substantial computer evidence that M is a twisted

homology product for the geometric representation π1(M)→ SL2(C) ([AD15]). They conjectured in general

1We note Gabai’s original definition allowed sutures to consist of entire torus components of the boundary. Here we are

interested in sutured handlebodies, and this aspect of the definition never arises.
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that every taut M has a 2-dimensional certifying representation, and proved this for a simple class of

manifolds, namely books of I-bundles.

For a given M the search for a certifying representation falls into two parts: understanding the linear

representations of π1(M), and understanding when such a representation is certifying. To simplify the

discussion we restrict attention to the case that M is a handlebody, so that π1(M) is free.

This case is of practical importance, since it often happens that the complement of a minimal genus Seifert

surface is a handlebody.

1.1. Statement of Results. The results herein primarily take the form of lower bounds on the complexity

of a certifying representation. Our first theorem demonstrates the sharpness of the bound conjectured by

Agol and Dunfield.

Theorem 1.4. For all g ≥ 2, there are taut sutured handlebodies Mg of genus g which fail to be a twisted

homology product for any one-dimensional representation.

Our construction for genus g ≥ 3 exploits a condition on how π1(R±) sit inside π1(M) which prevents M

from being a one-dimensional twisted homology product.

The genus 2 example was found by a computer search. This example has a suture set consisting of three

curves. Note that in genus two, R± will either be pairs of pants, or once-punctured tori. A similar search

has produced no examples with R± once-punctured tori, which leads us to the following conjecture.

Conjecture 1.5. Let M be a taut sutured genus-two handlebody with a single connected suture. Then M is

a twisted homology product for some representation α : π1(M)→ GL1(C).

Besides the computational evidence for this conjecture, allowing only a single suture imposes a stronger

relationship between π1(R+) and π1(R−), which we expect simplifies the situation so that, roughly speaking,

less can go wrong. For example, by Mayer-Vietoris, the twisted homology groups in this setting satisfy a

splitting H1(∂M ;Eα) = H1(R+;Eα)⊕H1(R−;Eα), which does not occur with multiple suture curves.

One might ask if, within this simplest setting, twisted coefficients are even necessary; perhaps tautness is

already detected by rational homology. This is not the case, as we illustrate in Example 3.2.

We generalize the obstruction from the proof of Theorem 1.4 to obstructions for admitting solvable

representations of arbitrarily large derived length. We use this to prove the following strong negation of

Agol and Dunfield’s conjecture within the restricted setting of solvable representations.

Theorem 1.6. There exist taut sutured manifolds Mk such that Mk is not a twisted homology product for

any solvable representation α : π1(Mk)→ GLϕ(k)(C), where ϕ(k)→∞ with k.

Dropping the requirement that the representation be solvable, these examples are certified by some two-

dimensional representation.

Remark 1.7. The manifolds Mk are handlebodies, which have free, and therefore residually finite rationally

solvable (RFRS), fundamental group. The representations produced by Friedl and Kim in their proof of

Theorem 1.2 are in general virtually solvable, and in the case the fundamental group of the sutured manifold

is RFRS, solvable on the nose. This theorem demonstrates the inherent weakness in their approach, if one

hopes to find tight bounds on the minimal dimension of a certifying representation.

The paper is organized as follows. In Section 2, we briefly review the theory of taut sutured manifolds

and taut sutured manifolds. In Section 3, we give two examples illustrating the need for twisted coefficients.
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Section 4 gives an algebraic condition for being a twisted homology product, and then addresses specifically

the situation of one-dimensional representations, including conditions for being a one-dimensional twisted

homology product. We use these conditions in Section 5 to prove Theorem 1.4. Finally, in Section 6 we

generalize the techniquess of Sections 4 and 5 to prove Theorem 1.6.

Acknowledgements. The author would like to thank Danny Calegari for his continuing support and guid-

ance throughout this work. She also gives thanks to Nathan Dunfield for identifying an error in an earlier

version of this paper, and pointing out Example 3.2 and the g = 2 case of Theorem 1.4. The author also

thanks Nick Salter for a multitude of helpful conversations and numerous comments on drafts of this paper.

2. Basic definitions and facts

2.1. Sutured manifolds.

Definition 2.1. A sutured manifold is a four-tuple (M,R±, γ) consisting of a compact 3-manifold M and a

collection of pairwise disjoint, embedded curves γ ⊂ ∂M , which partition ∂M − γ into oriented subsurfaces

R+ and R−, such that the orientations induced on their common boundary γ agree.

Though this definition does not require it, we will always assume M is connected. Some sources define

the sutures to be a collection of annuli; our definition as a collection of curves is equivalent, though we

occasionally view the sutures as annuli when convenient for notational or conceptual purposes.

Example 2.2.

(1) Given any compact surface S, the manifold M = S × I can be given a natural sutured structure,

where γ = ∂S × I, R+ = S × 1 and R− = S × 0.

(2) Any Seifert surface S associated to a knot K, or more generally a link L, defines a sutured manifold

S3 − N(S), with γ = K (or L) and R± ∼= S. The knot (or link) is fibered by S exactly when this

sutured manifold is a product.

We are particularly interested in taut sutured manifolds, which we define below. We recall first the

Thurston norm on H2(M,N ⊆ ∂M). Given a connected embedded surface (S, ∂S) ⊆ (M,N), we define

χ−(S) = max{0,−χ(S)}. For S not connected, χ−(S) =
∑
T⊆S χ−(T ), taken over connected components

of S. Finally, the Thurston norm of σ ∈ H2(M,N) is defined as

‖σ‖ = min
[S]=σ

χ−(S).

Definition 2.3. A sutured manifold M is taut if it is irreducible and R± are taut, that is, they are incom-

pressible and realize the Thurston norm of their homology class.

Definition 2.4. A sutured manifold M is balanced if it is irreducible and χ(R+) = χ(R−), and moreover

M is not a solid torus without sutures, and if any component of R± has positive Euler characteristic, then

M is D3 with a single suture.

Notice that a taut sutured manifold is necessarily balanced. We will make use of this prerequisite, in

particular that χ(R+) = χ(R−).
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2.2. Twisted homology products. Associated to any representation α : π1(M) → GL(V ) of the funda-

mental group of a sutured manifold M are homology groups H∗(M ;Eα) and cohomology groups H∗(M ;Eα)

with coefficients twisted by the representation α. More briefly, we refer to these groups as the α-twisted

(co)homology of M . The notation Eα refers to the view of the twisted coefficients as a vector bundle equipped

with the action of π1(M) via α.

The inclusions i± : R± →M pullback the coefficient bundle Eα to a bundle over R±, allowing us to define

H∗(R±; i∗±Eα) along with natural maps

H∗(R±; i∗±Eα)
(i±)∗−−−→ H∗(M ;Eα),

and similarly in cohomology. Notice any representation α restricts to representations (i±)∗α : π1(R±) →
GL(V ), which is exactly the action defining i∗±Eα. We will generally elide the pullback notation and write

H∗(R±;Eα).

Definition 2.5. A sutured manifold M is an α-homology product for a representation α : π1(M)→ GL(V )

if the maps i±∗ are all isomorphisms.

This is equivalent to requiring all relative twisted homology groups vanish:

H∗(M,R±;Eα) = 0.

Our interest in twisted homology products is motivated by the following theorem of Friedl and Kim

([FK13]).

Theorem 2.6 (Friedl-Kim). Let M be a balanced sutured manifold. Then M is taut if and only if M is an

α-homology product for some α : π1(M)→ GLn(C).

In particular, the representation α may always be taken to be a unitary representation. This proves any

taut sutured manifold can be realized as a twisted homology product, giving a novel method for verifying

tautness of sutured manifolds. However, their construction of the certifying representation uses in a key way

Agol’s virtual fibering ([Ago08]).

Most standard homological tools translate to the setting of twisted coefficients. with one noteworthy

caveat accompanying the twisted version of the universal coefficient theorem. The identifications here are

Hk(M ;Eα) ∼= Hk(M ;E∗α) and Hk(M,R;Eα) ∼= Hk(M,R;E∗α),

where E∗α is the dual bundle to Eα. This bundle corresponds to the ‘dual representation’ α∗ defined as the

unique representation such that 〈α(g−1)v, w〉 = 〈v, α∗(g)w〉 for all v, w ∈ GL(V ) and g ∈ π1(M).

In general, the bundles Eα and E∗α will not be isomorphic. We will often be interested in representations

which satisfy the following homological generalization of this condition.

Definition 2.7. A representation α : π1(M)→ GL(V ) is homologically self-dual if, for any subspace A ⊆M ,

there is an isomorphism H∗(M,A;Eα) ∼= H∗(M,A;Eα).

For example, any unitary representation is homologically self-dual, as is any representation to SL2(K),

for any field K. This condition is of particular use because it greatly simplifies verifying M as a twisted

homology product.

Proposition 2.8 (Agol-Dunfield [AD15], Proposition 3.1). Suppose M is a connected, balanced sutured

manifold with R± nonempty. If α is homologically self-dual, then M is an α-homology product if and only
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if any one of the following vanish:

Hk(M,R±;Eα), Hk(M,R±;Eα) for k = 1, 2.

We give their proof to highlight a couple of facts which do not need the assumption of homological

self-duality.

Proof. As R± are nonempty, we know H0(M,R±;Eα) = H0(M,R±;Eα) = 0. By Poincaré duality, also

H3(M,R∓;Eα) = 0. Now suppose H1(M,R−;Eα) = 0; the other cases are similar. Since M is balanced,

we have χ(R±) = χ(M), so χ(H∗(M,R−;Eα)) = 0. Then, since Hk(M,R−;Eα) = 0 for k 6= 2, we also

have H2(M,R−;Eα)) = 0. Poincaré duality now shows H∗(M,R+;Eα) = 0. Finally, as α is homologically

self-dual, this gives H∗(M,R+;Eα) = H∗(M,R+;Eα) = 0. �

We do not use self-duality until the last step. More generally, we can say

Corollary 2.9. For R = R±,

H1(M,R;Eα) = 0 ⇐⇒ H2(M,R;Eα) = 0,

and

H1(M,R;Eα) = 0 ⇐⇒ H2(M,R;Eα) = 0.

Corollary 2.10. M is an α-homology product if and only if

H1(M,R+;Eα) = H1(M,R+;E∗α) = 0

for either choice of R = R±.

In particular, if M is an α-homology product, it is also an α∗-homology product.

2.3. Sutured manifold hierarchies. To conclude this section, we discuss one method we might try to use

for constructing representations, and why it fails. Recall the sutured manifold hierachy of a taut sutured

manifold M is a sequence of decompositions

M = M0
S1−→M1

S2−→M2
S3−→ · · · Sn−−→Mn

such that each Sk meets the sutures of Mk−1 transversally, each Mk is taut, and every embedded surface

in Mn is separating. Gabai introduced this concept in [Gab83], proving such hierarchies always exist, and

moreover, that if a sequence of decompositions of an arbitrary sutured manifold M satisfies certain additional

conditions, tautness of Mn implies M is taut as well.

As these hierarchies are often used in inductive arguments, one might hope that such a hierarchy can be

used to inductively construct certifying representations. More precisely, if M
S−→ N is a decomposition, then

N is a subspace of M , so a representation of M restricts to a representation of N . Suppose M and N are

both taut, and that α is certifying for M . One might näıvely imagine that the restriction of α is certifying

for N . This is not true, as the following example shows.

Example 2.11. The handlebodies M and N in Figure 1 are related by a decomposition along a disk meeting

the sutures in M in four points. In this case, we may realize π1(M) as an HNN extension of π1(N) ∼= F2,

with π1(M) ∼= F3 gaining a free generator z. The representation α : π1(M)→ GL(C) defined by α(x) = −1

and α(y) = α(z) = 1 is certifying for M , as can be verified via Proposition 4.1. However, when restricted to

N , the representation α is no longer certifying: the locus of representations which fail to be certifying are

those with x 7→ −1.
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Figure 1. The decomposition of M (left) along the disk S to obtain N (right).

The reason for this is that there is part of the boundary of N which is not contained in the boundary

of M . Understanding when this näıve guess fails requires analyzing how the suture structure changes with

this new boundary, which is subtle in practice. However, this failure is isolated to the local situation of the

decomposition. That is, if S± ⊆ N are the two copies of S in the boundary of N , there is still an injection

H∗(R± − S±;Eα|N ) ↪→ H∗(N ;Eα|N ).

In this example, it is the case that both manifolds admit one-dimensional certifying representations.

However, even the condition for admitting a one-dimensional certifying representation is subtle to understand

in relation to a decomposition M
S−→ N .

As we will see in Lemma 5.1, in the special case that the surface S is a disk meeting the sutures of M

exactly twice, a certifying representation for N can be extended to one which certifies M .

3. Necessity of twisted coefficients

We give two examples of genus-two taut sutured handlebodies which fail to be rational homology products.

This illustrates the necessity of twisted coefficients for certifying tautness, even in this topologically simple

setting. Our first example captures the essential feature of this failure, that significant information may be

lost in abelianizing an injection π1(R±)→ π1(M) to the induced map on homology H1(R±;Q)→ H1(M ;Q).

Example 3.1. Let M be a genus-two handlebody, with suture γ consisting of the three curves shown in

Figure 2. These correspond to the free homotopy classes yx, xaby, and (xaby2x)−1.

The boundary components R± are topological pants. Their fundamental groups, as subgroups of π1(∂M),

are both freely generated by yx and xaby. These inject into π1(M) as the subgroup 〈xy, yx〉. Abelianizing,

we see this is not a rational homology product: the generators of the fundamental group map to the same

cycle in H1(M ;Q).

The suture set in the above example consists of three curves. We can also produce examples with only a

single suture curve, though none as simple as the example above.

Example 3.2. Consider M as in Figure 3. The generators of R+ map to x and [x, y][x, y−1] in π1(M). Under

the map on homology H1(R+;Q)→ H1(M ;Q) induced by the inclusion i : R+ ↪→M , the second generator

is killed. Thus its image has rank one, and so M cannot be a rational homology product.
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Figure 2. A simple example of a genus-2 taut handlebody.

Figure 3. A genus-2 example with a single suture. The suture curve γ has image
[x, [x, y][x, y−1]] ∈ π1(M), with π1(M) generated by x, y as in Figure 2.

We return to these examples in Section 4 to prove tautness using tools developed therein. Alternatively,

they can both be seen to be taut by observing that if not, each suture component would need to bound a

disk in M , but in both examples, the suture sets contain a disk-busting curve.

Remark 3.3. These examples can be extended to any higher genus by attaching sutured one-handles (see

Section 5 for a definition). By Lemma 5.1, this is still taut, and still fails to be a rational homology product.
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Figure 4. The subsurface R+.

4. Restricting to one-dimensional representations

The following Proposition is a straightforward generalization of Proposition 5.2 of [AD15], in which

g = n = 2. Our proof follows analogously to that of Agol-Dunfield. Take M to be a balanced sutured

handlebody of genus g, with R+ connected. Then π1(M) and π1(R+) are free groups of rank g.

Let π1(M) = 〈x1, . . . , xg〉 and π1(R+) = 〈a1, . . . , ag〉, and let i∗ : π1(R+) → π1(M) be the map induced

by the inclusion i : R+ ↪→M . Given a word w ∈ π1(M), we write ∂xiw for its Fox derivatives in Z[x1, . . . , xg]

([Fox53]). Notice that any representation α : π1M → GL(V ) extends naturally to a ring homomorphism

α : Z[x1, . . . , xg]→ End(V ).

Proposition 4.1. For a fixed representation α : π1(M)→ GL(V ), with dimV = n, if the sutured handlebody

M is an α-homology product, then the gn× gn matrix(
α
(
∂xi

i∗(aj)
))

i,j

has nonzero determinant.

Furthermore, when α is homologically self-dual, this condition is sufficient.

Proof. Let W be a two-complex with a single vertex v, 2g edges ex1
, . . . , exg

and ea1 , . . . , eag , and g faces

r1, . . . , rg, which are attached to the edges according to i∗(ai)a
−1
i , for each i. Set B =

⋃
i eai . Then there

is a map j : (W,B) → (M,R+) realizing the map π1(W ) → π1(M) sending [exi
] 7→ xi and [eai ] 7→ ai, and

which is a homotopy equivalence of these pairs of spaces.

The map j∗ : π1(W )→ π1(M) pulls α back to a representation α ◦ j∗ : π1(W )→ GL(V ). The map j then

induces maps between the twisted homology and cohomology groups associated to α:

H∗(M ;Eα)→ H∗(W ;Eα◦j∗), H∗(W ;Eα◦j∗)→ H∗(M ;Eα),

H∗(R+;Eα)→ H∗(B;Eα◦j∗), H∗(B;Eα◦j∗)→ H∗(R+;Eα).
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As j is a homotopy equivalence M →W and R+ → B, these maps are all isomorphisms. The isomorphisms

on cohomology combine with the long exact sequence for pairs to give the following commutative diagram.

Hn−1(W ;Eα◦j∗) Hn−1(M ;Eα)

Hn−1(B;Eα◦j∗) Hn−1(R+;Eα)

Hn(W,B;Eα◦j∗) Hn(M,R+;Eα)

Hn(W ;Eα◦j∗) Hn(M ;Eα)

Hn(B;Eα◦j∗) Hn(R+;Eα)

i∗

j∗

i∗

d

j∗

d

i∗

j∗

i∗

j∗

By the five lemma, the induced map j∗ : H∗(M,R+;Eα)→ H∗(W,B;Eα◦j∗) is also an isomorphism.

If M is an α-homology product, then H2(M,R−;Eα) ∼= H1(M,R+;Eα) = 0, and also H1(W,B;Eα◦j∗) =

0. To define H1(W,B;Eα◦j∗), we begin with the chain complex C∗(W̃ ;Z) of Z[π1(M)]-modules associated

to the universal cover of W , then take Z[π1(M)]-module homomorphisms of this complex to V . Writing

Λ = Z[〈x1, . . . , xg〉] = Z[π1(M)], the chain complex has the form

C∗(W̃ ;Z) : 0→
⊕
i

Λrai
∂2−→
⊕
i

(Λexi
⊕ Λeai)

∂1−→ Λv → 0.

The left-module map ∂i can be represented as a matrix, which act on an element of Ci(W̃ ;Z), viewed as

a row vector, by multiplication on their left and the vector’s right, namely ∂i(u) = u · ∂i. These matrices are

∂1 =



x1 − 1
...

xg − 1

i∗(a1)− 1
...

i∗(ag)− 1


∂2 =


∂x1

i∗(a1) · · · ∂xg
i∗(a1) −1

...
. . .

...
. . .

∂x1
i∗(ag) · · · ∂xg

i∗(ag) −1



Note the left half of the second matrix consists of the Fox derivatives ∂xii∗(aj)a
−1
j = ∂xii∗(aj); similarly,

the entries in the right half are ∂aii∗(aj)a
−1
j = −δi,j .

Applying HomΛ(·, V ) to C∗(W̃ ;Z) gives the cochain complex C∗(W ;Eα◦j∗). The effect of applying this

functor replaces each Λ with a copy of V , and applying α (extended to a ring homomorphism) to each element

of the matrices representing ∂1 and ∂2 to obtain the di maps. As matrices, the di act by multiplication on

column vectors to their right. Then the cochain complex is

C∗(W ;Eα◦j∗) : 0← V g
d1←− V 2g d0←− V ← 0.

We are interested, however, in C∗(W,B;Eα◦j∗). This consists of those cochains which vanish when restricted

B, namely, which are supported away from B. As B is one-dimensional, this consists of all of C2(W ;Eα◦j∗),

as well as the cochains supported on the exi
in C1(W ;Eα◦j∗). Thus the relative cochain complex is

C∗(W,B;Eα◦j∗) : 0← V g
d1←− V g ← 0← 0.
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Here d1 restricts to the α(∂xii∗(aj)) half of the full matrix.

As M is taut, H1(W,B;Eα◦j∗) = 0, so d1 must have full rank, that is, the determinant in the statement

of the proposition must be nonvanishing.

Lastly, if α is homologically self-dual and this determinant is nonzero, by Corollary 2.10, M is taut. �

The condition of this determinant being nonzero corresponds exactly to H2(M,R+;Eα) (and therefore

H1(M,R−;Eα)) vanishing. In the case α is not homologically self-dual, we can still verify tautness by

checking that neither this determinant nor that associated to α∗ vanishes.

Remark 4.2. From the perspective of the representation variety Hom(π1(M),GL(V )), the condition given by

Proposition 4.1 determines a Zariski-open subspace of certifying representations. In the setting of M a han-

dlebody, the representation variety is connected, and so such a subspace is either empty, or the complement

of a collection of lower dimensional subvarieties, and therefore dense in the full variety.

On a practicable level, this is good news for certifying tautness. Supposing we knew an upper bound on

minimal complexity of a certifying representation, we expect a ‘random’ representation of that complexity

to in fact be certifying.

Proposition 4.1 specifically applies to sutured handlebodies, and does not immediately generalize outside

of this setting. However, we expect this intuition for the space of certifying representations within the repre-

sentation variety to generalize, and the certifying representations to similarly form a Zariski-open subspace.

However, for M not a handlebody, this representation variety may not be connected.

Example 4.3 (Examples 3.1 and 3.2). We can apply Proposition 4.1 to see the manifolds in our earlier

examples are taut. First, for (M,γ) in Example 3.1, let α : π1(M) → GL1(C) be any one-dimensional

representation. By Proposition 4.1, M is an α-homology product when

det

α(∂x(xy)
)

α
(
∂y(xy)

)
α
(
∂x(yx)

)
α
(
∂y(yx)

)
 6= 0.

That is to say,

det

α(∂x(xy)
)

α
(
∂y(xy)

)
α
(
∂x(yx)

)
α
(
∂y(yx)

)
 = det

α(1) α(x)

α(y) α(1)

 = 1− α(xy) 6= 0.

Rephrasing what we saw in Example 3.1, this shows in particular we cannot take α to be the trivial repre-

sentation, where α(x) = α(y) = 1. However, for any choice of α with α(xy) 6= 1, this will not be 0.

We turn to (M,γ) from Example 3.2. For α : π1(M)→ GL1(C) fixed, M is an α-homology product when

det

(
α
(
∂x(x)

)
α
(
∂y(x)

)
α
(
∂x([x, y][x, y−1])

)
α
(
∂y([x, y][x, y−1])

)) 6= 0.

These Fox derivatives are

∂x(x) = 1, ∂y(x) = 0,

∂x([x, y][x, y−1]) = 1− xyx−1 + [x, y]− [x, y]xy−1x−1,

∂y([x, y][x, y−1]) = x− [x, y]− [x, y]xy−1 + [x, y]xy−1x−1.
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The image of α is abelian, so

det

(
α
(
∂x(x)

)
α
(
∂y(x)

)
α
(
∂x([x, y][x, y−1])

)
α
(
∂y([x, y][x, y−1])

))

= det

(
1 0

α(2− y − y−1) α(x− 1− xy−1 + y−1)

)
= α

(
(y−1 − 1)(1− x)

)
6= 0.

This condition is non-vanishing – specifically, whenever α(x), α(y) 6= 1 – yielding a nonempty Zariski-open

set of certifying α.

Returning to the setting of a genus-g sutured handlebody M , consider the case of a one-dimensional

representation α : π1(M) → GL1(C). Here, we have an algebraic understanding of what it means to be a

twisted homology product. For a word w ∈ π1(M), we write ∂w for the vector of Fox derivatives of w with

respect to x1, . . . , xg.

Proposition 4.4. M is a one-dimensional twisted homology product if and only if the vectors of abelianized

Fox derivatives ab(∂i∗(aj)) are linearly independent.

Proof. Consider the composition of maps

π1(M)
∂−→ Z[π1(M)]g

α−→ (GL1(C))g,

which takes a a ∈ π1(M) to the vector of the α-images of its g partial Fox derivatives ∂xia. Since GL1(C)

is abelian, α factors through the abelianization

π1(M)
∂−→ Z[π1(M)]g

ab−→ Z[Zg]g α−→ (GL1(C))g.

Similarly, the composition of maps

π1(M)g
∂−→ Z[π1(M)]g

2 α−→ (GL1(C))g
2 det−−→ C,

factors

π1(M)g
∂−→ Z[π1(M)]g

2 ab−→ Z[Zg]g
2 α−→ (GL1(C))g

2 det−−→ C

We claim for any w ∈ Z[Zg] = Z[π1(M)ab], we can choose α to detect w, meaning α(w) 6= 0. Order the

monomial terms of w by setting
∏
xni
i >

∏
xmi
i if ni > mi for the first i such that ni 6= mi. Then pick α so

that α(x1)� α(x2)� · · · � α(xg); the leading term of w will dominate, and α(w) 6= 0.

Because α is one-dimensional, the following diagram commutes.

Z[Zg]g2 (GL1(C))g
2

Z[Zg] GL1(C)

α

det det

α

Thus det (ab(∂i∗(aj))) = 0 exactly when det (α(∂i∗(aj))) = 0 for all choices of α. �

We end this section with a lemma which provides a condition for being a one-dimensional twisted product.

It will prove useful for finding non-examples. Recall the derived series G(k) of G is defined by G(0) = G and

G(k+1) = [G(k), G(k)].

Lemma 4.5. If M is a one-dimensional twisted homology product, then π1(R±) ∩ π1(M)(2) ⊆ π1(R±)(1).
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Proof. Suppose M is an α-homology product for some α : π1(M)→ GL1(C).

Recall that H1(M ;Eα) is the group of all twisted homomorphisms f : π1(M) → C, modulo twisted

homomorphisms of the form ẑ(g) = α(g) · z − z for z ∈ C. Any f ∈ H1(M ;Eα) necessarily vanishes on

π1(M)(2). We see this first by observing that

f([u, v]) = f(u) + α(u)f(v) + α(uv)f(u−1)− α(uvu−1)f(v−1)

= f(u) + α(u)f(v)− α(uvu−1)f(u)− α(uvu−1v−1)f(v)

= (1− α(v))f(u)− (1− α(u))f(v),

since GL1(C) is abelian. Now, this is zero when α(u) = α(v) = 1, for instance, for u, v ∈ π1(M)(1). Such

elements [u, v] normally generate π1(M)(2), so f must vanish on all of π1(M)(2).

Consider now H1(R±;Eα). Any twisted homomorphism is determined by its values on the generators

a1, . . . , ag of π1(R±). Fix w ∈ π1(R±) ∩ π1(M)(2) and let #aiw denote the number of occurrences of ai

(counted with sign) in w. Notice #aiw = 0 for all i is exactly the condition for w ∈ π1(R±)(1). Supposing

w 6∈ π1(R±)(1), then some #aiw 6= 0. Define g ∈ H1(R±;Eα) by g(aj) = δij . By construction, g(w) 6= 0.

Consider the long exact sequence of cohomology groups

· · · → H1(M ;Eα)
i∗−→ H1(R±;Eα)

δ−→ H2(M,R±;Eα)→ · · · .

As any f ∈ H1(M ;Eα) vanishes on w, the twisted homomorphism g constructed above does not lie in the

image of i∗. But by exactness, g then is not in the kernel of δ, so H2(M,R±;Eα) 6= 0. By Poincaré duality,

then H1(M,R∓;Eα) 6= 0, which contradicts our assumption that M is an α-homology product. �

5. Examples which are not one-dimensional homology products

In this section, we give a family of handlebodies of all genus g ≥ 2 which are not twisted homology products

for any one-dimensional representation. We begin with a lemma which describes a way of increasing genus

of a taut handlebody while preserving the set of certifying representations. This is used in conjunction

with a genus-two example to prove the main result of the section. The genus-two example was found via

computer search with SnapPy ([CDGW]). We follow this with an explicit construction an example of a

genus-three handlebody, which better elucidates the obstruction to admitting a one-dimensional certifying

representation.

For ease of notation, we treat γ as a collection of annuli instead of curves. Given a sutured manifold M ,

we can construct a new sutured manifold N by attaching a sutured one-handle. The one-handle D2 × D1

is given a product sutured structure I × (D1 × D1). It is attached to M along the disks I × (D1 × ∂D1),

which we require to meet γ in two strips so that 0 × (D1 × ∂D1) ⊂ R− and 1 × (D1 × ∂D1) ⊂ R+. This

construction is illustrated in Figure 5.

Lemma 5.1. Suppose M is a taut sutured manifold. If (N,R′±, γ
′) is obtained by attaching a sutured

one-handle to M , then N is also taut. Moreover, for any representation α : π1(M) → GL(V ), there is a

representation α′ : π1(N)→ GL(V ) with α′|π1(M) = α such that M is an α-homology product if and only if

N is an α′-homology product.

Proof. Note π1(N) = π1(M) ∗ 〈x〉, where x is the core of the one-handle. Moreover, π1(R′±) = π1(R±) ∗ 〈x〉.
Define α′ to agree with α on π1(M) and to map x to the identity.

Notice

det

(
α′
(
∂x′ii∗(a

′
j)
))

= det

(
α
(
∂xi

i∗(aj)
)

0

0 I

)
= det

(
α
(
∂xi

i∗(aj)
))
.
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Figure 5. Attaching a sutured handle. The grey bands represent portions of the suture γ,
viewed as annuli and oriented by the arrows drawn. Homeomorphisms F and G identify the
corresponding disks. The letters F and G indicate the maps’ respective orientations and
restrictions to the boundary.

The corresponding equality also holds for the dual representations. Thus the result follows from Proposi-

tion 4.1. �

Theorem 5.2 (Theorem 1.4). For every g ≥ 2, there is a taut sutured handlebody Mg of genus g such that

M is not an α-homology product for any representation α : π1(Mg)→ GL1(C).

Proof. For g = 2, we construct M = M2 as follows. Define a sutured structure on M by taking R+
∼= Σ0,3 ⊂

∂M to be a tubular neighborhood of the curves illustrated in Figure 6; γ the boundary of this neighborhood;

and R− = ∂M − R+. Fix x and y as generators of π1(M). The two boundary curves in the figure, which

generate π1(R+), map to a = [y, x−1][x, y−1] and b = [y−1, x][y−1, x−1].

Let α : π1(M) → GL1(C) be any representation. Since α has abelian image, we can simplify the matrix

A in Proposition 4.1 by replacing the entries with the abelianization of the Fox derivatives. This yields

A =

(
α(−x−1y + x−1 + 1− y−1) α(1− x−1 − xy−1 + y−1)

α(y−1 − 1− x−1y−1 + x−1) α(−2y−1 + xy−1 + x−1y−1)

)
.

We leave it to the reader to verify the determinant of this matrix vanishes, independent of the choice of α.

We demonstrate that M is taut via the certifying representation β : π1(M)→ SL2(C), defined by

β(x) =

(
1 1

0 1

)
, β(y) =

(
0 1

−1 0

)
.

As remarked earlier, representations to SL2(C) are homologically self-dual, so Proposition 4.1 applies.
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Figure 6. Example with no certifying 1-dimensional representation.

The (non-abelianized) Fox derivatives of a and b are

∂xa = −yx−1 + yx−1y−1 + yx−1y−1x− yx−1y−1x2y−1x−1

∂ya = 1− yx−1y−1 − yx−1y−1x2y−1 + yx−1y−1x2y−1x−1

∂xb = y−1 − y−1xyx−1 − y−1xyx−1y−1x−1 + y−1xyx−1y−1x−1y

∂yb = −y−1 + y−1x− y−1xyx−1y−1 + y−1xyx−1y−1x−1

Then

det

(
β(∂xa) β(∂ya)

β(∂xb) β(∂yb)

)
= det


0 3 0 −2

0 6 −1 −3

0 −1 0 1

1 1 0 −1

 = 1,

so M is taut.

We may iteratively apply Lemma 5.1 to construct higher genus handlebodies from this example. The

process in the Lemma gives a handlebody Mg for all g > 2 which is still a two-dimensional twisted homology

product, and fails to admit a certifying one-dimensional representation. �

We now give an alternative, explicit construction of a genus-three example. This example puts to use

Lemma 4.5, by building a curve which lies in π1(M)(2). It is also a precursor to the construction within the

proof of Theorem 6.1 in Section 6.

Example 5.3. We build a taut (M,R±, γ) with R+ containing a curve whose image in π1(M) lies in π1(M)(2).

Let M be a genus-3 handlebody, with π1(M) = 〈x, y, z〉.
To describe the sutured structure on M , we begin by constructing a simple closed curve a on the boundary

of M which lives in π1(M)(2). Figure 7 illustrates this process. First, we draw the curves A and B, which

are disjoint and have image in π1(M)(1). The curve a is constructed from A and B to have image a =

[A, zBz−1] ∈ π1(M). Figures 7b and 7c show this construction, by first taking two copies of each A and B,

and then connecting them via arcs to yield a simple closed curve with the desired image. Picking a basepoint
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(a) Disjoint curves A, B with image in π1(M)(1).
(b) A, B doubled and pushed off themselves.

(c) Copies of A and B connected by segments z.
(d) The curve a = [A, zBz−1].

Figure 7. Construction of the curve a.

along a, we then find two more simple closed curves b and c on ∂M , disjoint away from the basepoint, as

shown in Figure 8. This captures all the information we need to define (M,R±, γ): a neighborhood of this

defines R+, which is homeomorphic to Σ1,2, its boundary γ, and its complement R−. From the construction,

we see

Im(π1(R+)) = 〈
[
[x, y][x−1, y], z[y−1, x][y, x]z−1

]
, [x, y][y−1, x−1], z〉.

We now check our example is taut. We do this by exhibiting a two-dimensional representation β : π1(M)→
GL2(C) which realizes M as a twisted homology product. Define β as follows:

β(x) =

(
1 1

0 1

)
, β(y) =

(
0 1

−1 0

)
, β(z) =

(
1 0

0 1

)
.
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Figure 8. Curves a, b, and c.

In fact β is a representation to U(2), so the associated twisted homology is self-dual. Then we can apply

Proposition 4.1. The relevant matrix is


β
(
∂xi∗(a)

)
β
(
∂yi∗(a)

)
β
(
∂zi∗(a)

)
β
(
∂xi∗(b)

)
β
(
∂yi∗(b)

)
β
(
∂zi∗(b)

)
β
(
∂xi∗(c)

)
β
(
∂yi∗(c)

)
β
(
∂zi∗(c)

)

 =



−8 −36 7 23 37 4

−2 −7 1 5 8 1

4 2 −1 −1 0 0

2 3 −1 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,

which is invertible with determinant 32, so M is indeed taut.

6. Restricting to solvable representations

In this section, we restrict to the setting of solvable representations. A group G is solvable if its derived

series G(k) = [G(k−1), G(k−1)] has finite length. For G solvable, let K denote the length of this series, that

is, the smallest index k such that G(k) = 1. Then G is solvable of degree K. This is equivalent to realizing

G as a K-fold abelian extension of an abelian group. We say a representation α : G→ GL(V ) is solvable if

it has solvable image, and similarly define the degree of solvability of α to be the degree of solvability of its

image.
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In this section, we prove the following.

Theorem 6.1. For any K, there is a taut sutured handlebody MK which fails to be a twisted homology

product for any solvable representation of degree less than K.

Observe that Example 3.1 and Theorem 5.2 satisfy this Theorem for K = 1, 2, respectively. In the setting

of GLn(C), Zassenhaus shows for a fixed n any solvable subgroup is of bounded degree of solvability ([Zas37]).

Let ϕ(K) denote the smallest n for which GLn(C) admits a solvable subgroup of degree K.

Corollary 6.2 (Theorem 1.6). The handlebody MK is not a twisted homology product for any solvable

representation to GLn(C) for n < ϕ(K).

In particular, the conjecture of Agol and Dunfield is false when restricted to the class of solvable repre-

sentations.

The next lemma captures the connection between solvability of a representation and its behavior with

respect to the Fox derivative.

Lemma 6.3. If α : G→ GL(V ) is solvable of degree K, then α(∂g) = 0 for any g ∈ G(K+1).

Proof. We show this holds for g = [g1, g2] where g1, g2 ∈ G(K); as elements of this form generate G(K+1),

this suffices. Recall

∂g = ∂g1 + g1∂g2 − g1g2g
−1
1 ∂g1 − g1g2g

−1
1 g−1

2 ∂g2.

As α(g1) = α(g2) = 1, thus

α(∂g) = α(∂g1) + α(∂g2)− α(∂g1)− α(∂g2) = 0. �

The idea of the proof of Theorem 6.1 is to construct sutured manifolds which carry curves deeper and

deeper in the derived series of the manifold’s fundamental group, thereby allowing us to exploit this property

of the Fox derivative. The construction of these curves follows the same “double-then-cut-and-paste” method

we use in the proof of Theorem 5.2 to build a curve in (π1(M))(2).

Proof of 6.1. We construct the manifolds MK by induction on K. We make the following assumptions on

MK−1:

(1) The suture set γ consists of a curve γ. We realize R+ as a closed neighborhood of g simple closed

curves c1, . . . cg disjoint away from a common basepoint;

(2) Some curve ci has image in π1(MK−1)(K−1) ≤ π1(MK−1).

Let M1 and M2 be two copies of MK−1, and let a1 and a2 denote the curves from condition (2). As the

sutures are single curves, there is some ci in each with geometric intersection i(ci, aj) = 1; denote these

by b1 and b2. We first construct an intermediate handlebody M ′K , by joining M1 and M2 by a one-handle

H1 = D2 ×D1 such that the disks D2 × ∂D1 are identified with disks disjoint from all the curves ci. Then

π1(MK) = π1(M1)∗π1(M2). Apply the procedure from the proof of Theorem 5.2 to a1 and a2, as illustrated

in Figure 9, to construct a curve a whose image in π1(M ′K) is [a1, a2], and therefore lies in π1(M ′K)(K). We

fix a basepoint along an arc of a within H2.

To obtain MK , we add an additional one-handle H2 = D2 ×D1 to M ′K by attaching the disks D2 × ∂D1

within a small neighborhood of the basepoint, to either side of the locally separating arc of a.

To the collection of curves ci in ∂MK , we add a new curve c which runs around this second handle, parallel

to its core, and intersecting a in exactly the basepoint. The remaining curves ci may intersect a. We modify
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Figure 9. The curve a constructed from a1 and a2.

them as illustrated in Figure 11. Notice this procedure alters the π1(MK)-image of a curve in one of the

following ways:

ci 7→ ci (Figure 11a)

ci 7→ ajcia
−1
j (Figure 11b)

ci 7→ cia
−1
j (Figure 11c)

These curves are once more disjoint away from a basepoint, as Figure 11d suggests. While not all combina-

torial arrangements of curves are shown, the remaining cases are similar. We add one final curve b = a1ca2,

which is also included in Figure 11d, giving a total of 2g + 1 curves. Take a closed neighborhood of these

as the new R+ and its boundary as the suture set γ defining a sutured structure on MK . This construction

shows MK satisfies the inductive conditions (1) and (2); in particular the curve c ensures γ is connected.

To verify MK is taut, we exhibit a sutured manifold decomposition

MK
S1−→M

S2−→M ′
S3−→M ′′ ∪M2,
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Figure 10. Adding the second one-handle H2 to obtain MK .

where M ′′ is another taut sutured handlebody of genus g.2 This decomposition is illustrated in Figure 12,

and described below.

The surface S1 is the disk D2×{ 1
2} ⊂ H2. The decomposition kills c, and by choosing appropriate choice

of orientation of S1, the curve b = a1ca2 becomes a1.

The surface S2 is a once-punctured torus bound by the curve a. Topologically, it is the two strips between

the two copies of a1 and a2 used to construct a, glued to the disk D2 × { 1
2} ⊂ H1, then pushed slightly into

the handlebody. Orient S2 so that M2 lies on the positive side of this disk. This separates M into two genus

g + 1 handlebodies M ′1 and M ′2. Notice in M ′2, the two copies of a1 used to construct a are now parallel in

R+, and similarly the copies of a2.

Finally, S3 consists of two disks, each cutting one of the new handles created by the decomposition along

S2. Choose these disks to be oriented to agree with a1 and a2, respectively. Additionally, push them off the

sutures where possible, to eliminate unnecessary intersections, by dragging the disks toward the basepoint.

In M ′2, this results in a disk which intersects the suture in exactly two points, cutting the a1-bands in

R±. The remainder of the ci are unaffected, and so the resulting sutured manifold is M2.

In M ′1, the situation is more complicated. This decomposition results in a handlebody whose sutured

structure is similar to, but not exactly that of M1. The subsurface R+ has fundamental group with generators

c1, . . . , cg, with the exception of any curve ci with geometric intersection i(ci, a1) = 1, such as b1. In this

2In fact this shows the intermediate manifolds are also taut, in particular M , which retains the obstruction to admitting a

certifying solvable representation of derived length K.
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(a) ci 7→ ci. (b) ci 7→ ajcia
−1
j .

(c) ci 7→ cia
−1
j . (d)

Figure 11. Modifying the ci on MK . The handle H2 is not shown, but is attached at the
points shown.

case, b1 is replaced by b1a1b
−1
1 , and other such ci can be replaced by cib

−1
1 . Notice that the existence of b1

ensures that R+ is connected. We observe, however, that this handlebody is taut exactly when M1 is: on

the level of Fox derivatives, this difference translates to

α(∂i∗(b1)) 7→ α(∂i∗(b1a1b
−1
1 )) = α(1− i∗(b1a1b

−1
1 ))α(∂i∗(b1)) + α(i∗(b1))α(∂i∗(a1)),

α(∂i∗(ci)) 7→ α(∂i∗(cib
−1
1 )) = α(∂i∗(ci))− α(i∗(cib

−1
1 ))α(∂i∗(b1)).

In the matrix given by Proposition 4.1, this demonstrates the matrix corresponding to M ′′ is obtained from

that for M1 via elementary row operations. This preserves invertibility, unless α(i∗(b1a1b
−1
1 )) = 1; in such

a situation α may be perturbed away from this locus, yielding a certifying representation for both M1 and

M ′′.
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Figure 12. Decomposing MK into two taut handlebodies of genus g.

Since a ∈ π1(MK)(K), by Lemma 6.3, the determinant in Proposition 4.1 vanishes for any solvable

representation of degree less than K. Therefore MK is not a twisted homology product for any such repre-

sentation. �
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