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1. Introduction

In this paper we study the complex structures which can occur on algebraic curves. The
ideas discussed illustrate the deep tie between the algebraic objects of study in algebraic
geometry, the topology of these objects when realized as surfaces, and the restrictions placed
on these topological structures when viewed as complex manifolds.

An outline of the paper is as follows. Roughly the first half of the paper will study the
family of complex curves yd = x(x − 1)(x − 2). We will show how to realize these curves as
smooth Riemann surfaces and (by passing to projective space), compact Riemann surfaces.
The natural question to ask is then which Riemann surfaces arise in this family. As it turns
out, this information is entirely encoded in the degree of the polynomial. The crux of the
first half of this paper will be in proving the degree-genus formula, which states that for a
smooth complex curve whose defining polynomial has degree d, the resulting Riemann surface
has genus

g =
1

2
(d− 1)(d− 2). (1.1)

Our proof follows that given in [2].
In the second half of this paper, we expand to the more general family of smooth curves

yd = x(x− 1)(x− t), where t ranges over C− {0, 1}. For a fixed d, the degree-genus formula
tells us that in fact this family can be realized as a surface bundle of genus g = 1

2(d−1)(d−2)
surfaces over the thrice punctured sphere Ĉ − {0, 1,∞}. As the parameter t varies in the
base space B, the complex structure on the curves varies as well. It turns out for different
choices of t, these structures are non-isomorphic. Moreover, varying t around a closed loop
necessarily induces a diffeomorphism on the fiber. Since the base space is not simply connected,
it has nontrivial fundamental group, and if we choose a loop which is not homotopic to the
identity, the resulting diffeomorphism is not isotopic to the identity (of the group of orientation-
preserving diffeomorphisms on the fiber) either. This defines a map from π1(B) to the mapping
class group of Σg, the group of isotopy classes of orientation-preserving diffeomorphisms on
Σg; this map is known as the monodromy of the surface bundle. We conclude this paper by
computing the monodromy of this family of curves, using the techniques in [1].

2. The curves yd = x(x− 1)(x− 2)

In this section we study the properties of the complex algebraic curves, where C denotes
the curve as a subset of C2 and P ∈ C[x, y] is its defining polynomial. Often it is useful to
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instead consider the projectivization of C in P2, the solution set of the homogenization of P
in C[x, y, z], and we will use P and C to refer to both. We focus in particular on the curves
Cd defined by the polynomials Pd(x, y) = yd − x(x− 1)(x− 2) for d ≥ 1.

Recall that a curve with corresponding polynomial P ∈ C[x, y] is nonsingular if no point
(a, b) ∈ C2 satisfies

P (a, b) =
∂P

∂x
(a, b) =

∂P

∂y
(a, b) = 0.

A point which does satisfy the above three equalities is called a singular point of P . In the
case of our curves Cd, for all d ≥ 1, Pd is nonsingular. Note that ∂Pd

∂y (a, b) = dbd−1 = 0 if and
only if d > 1 and b = 0. Then we must have Pd(a, 0) = −a(a− 1)(a− 2) = 0, so a = 0, 1, or
2. None is a solution of ∂Pd

∂x (a, 0) = −3a2 + 6a− 2 = 0, so Pd has no singular points.1

Nonsingular curves are also known as smooth curves, as the smooth curves are exactly those
which can be realized as smooth Riemann surfaces. Such a curve over C2 need not be compact,
but can be extend canonically to a projective curve in P2, which is necessarily compact.

We next illustrate how to construct a complex structure for a projective curve C, by doing
so for our family of curves Cd. Let ϕ : Cd → P1 be the projection ϕ([x : y : z]) 7→ [x : z]. Since
[0 : 1 : 0] is not a point on Cd for any d, this projection is well-defined. Note that except when
x(x− z)(x− 2z)zd−3 = 0, the preimage ϕ−1([x : z]) of a point in P1 contains exactly d points,
the dth roots of x(x − z)(x − 2z)zd−3. Restricted to these points, ϕ is then a d-fold covering
map onto its image. On all of Cd, ϕ is a d-fold branched cover of P1.

Recall for a holomorphic map ϕ : M → N between Riemann surfaces, the ramification index
of ϕ at a point p ∈M is the (unique) positive integer νϕ(p) such that for an appropriate choice

of local coordinates ψM : U → C, ψN : V → C, ψN ◦ ϕ ◦ ψM is the map z 7→ zνϕ(p). In the
context of algebraic curves, we give a slightly different definition of ramification index than
the usual one.

Definition 2.1. Let C be an projective algebraic curve with defining polynomial P ∈ C[x, y, z].
By a change of coordinates, assume [0 : 1 : 0] 6∈ C. Let ϕ : C → P1 be the projection defined
above. The ramification index νϕ(p) of ϕ at a point p = [a : b : c] ∈ C is the multiplicity of b
as a root of the polynomial P (a, y, c) ∈ C[y].

In fact these definitions agree; both give a description of the local behavior of the map ϕ at
a point p, which is always an m to 1 on a punctured neighborhood of p. We then define, in
the usual way, the ramification points R ⊆ C to be the p ∈ C with νϕ(p) > 1 and the branch
points B ⊆ P1 of ϕ to be ϕ(R).

As ϕ : Cd → P1 is a branched cover, this defines a complex structure on Cd by pulling back
via ϕ the complex structure on P1. We see this more precisely as follows.

Away from the ramification points, for any point z0 6∈ R, ϕ restricts to some neighborhood U
of z0 on which it a homeomorphism onto its image, and so the complex structure on ϕ(U) ⊆ P1

lifts to a complex structure on U . At a ramification point z0 ∈ R with ramification index
νϕ(z0) = m > 1, we can find a neighborhood U of z0 in Cd and local coordinates on P1 around

1In general, a polynomial P (x, y) = yd −
∏

(x− ai)
mi is smooth exactly when mi = 1 for all i; as in our

example above, ∂P
∂y

(a, b) = 0 if and only if b = 0, so any singular point must be of the form (a, 0) where a is

simultaneous a root of P (x, 0) ∈ C[x] and ∂P
∂x
∈ C[x]. But the roots of P (x, 0) are the ai, and (x− ai) divides

∂P
∂x

if and only if mi > 1.
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ϕ(z0) such that on U and in these coordinates on P1, ϕ is the map z 7→ zm. This defines local
coordinates on Cd, and gives a well-defined complex structure to Cd.

Thus we have given our curve Cd the topological structure of a smooth, closed Riemann
surface. It is natural then to ask which closed surface corresponds to Cd. In the next section
we prove the degree-genus formula, which illustrates the deep connection between the algebra
and topology of the situation, namely in the close relation between the degree of a polynomial,
an algebraic property, and the genus and Euler characteristic of the curve it defines, both
topological properties.

3. The degree-genus formula

In the preceding section we realized the surface Cd as a branched cover of P1 via the
projection ϕ([x : y : z]) 7→ [x : z]. A similar construction may be done for a general curve C.
After a suitable change of coordinates (a diffeomorphism which preserves the genus of C), we
may assume the point [0 : 1 : 0] does not lie in C, so ϕ is well-defined. This also allows us to
define a complex structure on C as the pull-back of the structure on P1 via ϕ.

We further assume that for every inflection point p of C, the tangent line tp(C) to C at p
does not contain the point [0 : 1 : 0]. C contains only finitely many inflection points, so we
can ensure this again by a suitable change of coordinates.

Remark 3.1. A point p = [a : b : c] ∈ C has ramification index νϕ(p) > 2 if and only if p is
an inflection point of C and tp(C) contains [0 : 1 : 0]. Note νϕ(p) > 2 if and only if

P (a, b, c) =
∂P

∂y
(a, b, c) =

∂2P

∂y2
(a, b, c) = 0.

∂P
∂y (a, b, c) = 0 corresponds to the condition that tp(C) contains [0 : 1 : 0] and ∂2P

∂y2
(a, b, c) = 0

exactly when p is an inflection point.

Thus our assumption above ensures each point p ∈ C has ramification index at most 2.

Theorem 3.2 (The degree-genus formula). Let C be a degree d nonsingular projective plane
curve. Then C is a smooth surface of genus

g =
1

2
(d− 1)(d− 2).

Proof. In this proof we construct an explicit triangulation of C, which allows us to compute
its Euler characteristic, χC . This triangulation shows χC = d(3−d). Then, using the standard
topological fact that a genus g surface has Euler characteristic 2−2g, we see that C has genus

1

2
(2− χC) =

1

2
(2− d(3− d)) =

1

2
(d− 1)(d− 2).

Consider the branched cover ϕ : C → P1 defined above. Let T be a triangulation of P1 such
that V contains the branch points B of ϕ; as P1 is homeomorphic to the sphere, construction
of such a triangulation can be done easily via induction on #B.

Given T , the branched cover ϕ allows us to lift T to a triangulation T̃ of C. Away from
ϕ−1(R) ⊆ C, ϕ is a d-sheeted cover of P1 −R. Then each face f ∈ F lifts to d disjoint faces

in F̃ and similarly each edge e ∈ E lifts to d disjoint edges in Ẽ. On ϕ−1(R), ϕ is not a
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covering map. However, for q = [a : c] ∈ V , ϕ−1(q) consists of the points [a : b : c] such that
P (a, b, c) = 0. P (a, y, c) is a monic polynomial in y, so by the definition of νϕ(bi),

P (a, y, c) =
∏

(y − bi)νϕ([a:bi:c]).

Then P (a, y, c) has exactly d −
∑

p=[a:bi:c]
(νϕ(p) − 1) distinct roots, which correspond to the

points of ϕ−1(q). Summing over all p ∈ V , then

#Ṽ = d#V −
∑

p∈ϕ−1(V )

(νϕ(p)− 1).

By definition, νϕ(p) > 1 if and only if p ∈ R, so in fact

#Ṽ = d#V −
∑
p∈R

(νϕ(p)− 1).

This allows us to compute the Euler characteristic of C,

χC = #Ṽ −#Ẽ + #F̃ ,

= d#V −
∑
p∈R

(νϕ(p)− 1)− d#E + d#F,

= dχP1 −
∑
p∈R

(νϕ(p)− 1),

= 2d−
∑
p∈R

(νϕ(p)− 1).

The last step is to make sense of the quantity
∑

p∈R(νϕ(p)− 1). By our assumption on the

inflection points of C, νϕ(p) ≤ 2 for all p ∈ C. Thus
∑

p∈R(νϕ(p)−1) = #R. Let the curve C ′

be the solution set of ∂P∂y = 0. The ramification points of C are intersection points of C and C ′.
Since C has no inflection points which lie on C ′, every point p ∈ C ∩ C ′ has distinct tangents
tp(C) and tp(C

′) and is a nonsingular point of C ′. Thus the intersection multiplicity of C and
C ′ at p is 1. By Bézout’s Theorem (see [2]), there are then exactly degP · deg ∂P

∂y = d(d− 1)
ramification points. Thus

χC = 2d− d(d− 1) = d(3− d),

proving the theorem. �

We also have as a consequence of this proof a special case of the Riemann-Hurwitz formula
for ϕ : C → P1.

Corollary 3.3.

χC = dχP1 −
∑
p∈C

(νϕ(p)− 1).

To illustrate the proof of Theorem 3.2, we use the method given to compute the genus of
one of the curves Cd.

Example 3.4. Let C be the curve defined by the polynomial P (x, y, z) = y4−x(x−z)(x−2z)z.
Since [0 : 1 : 0] is not a point on C, the map ϕ : C → P1 is well-defined. P has degree 4, so ϕ
is a 4-sheeted branched cover of P1. To compute the ramification points of ϕ, note that for a
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point [a : b : c] ∈ C, the polynomial P (a, y, c) can only have a multiple root at b if both b = 0
and a(a − c)(a − 2c)c = 0. This results in four ramification points, each with ramification
index 4, namely the points [0 : 0 : 1], [1 : 0 : 1], [2 : 0 : 1], and [1 : 0 : 0].

We can then realize C as the following identification space: Let U the open subset of the
Riemann sphere Ĉ ∼= P1 obtained by removing the arcs from [0 : 1] to [1 : 1], [1 : 1] to [2 : 1],
and [2 : 1] to [1 : 0]. By opening up the removed arcs, we see U is homeomorphic to a disk,
and in particular, the interior of a hexagon with edges corresponding to the arcs and vertices
corresponding to the branch points. U is simply connected and contains none of the branch
points of ϕ, so ϕ−1(U) is the disjoint copy of four open sets, each homeomorphic to the interior
of a hexagon, which map homeomorphically onto U . We then construct C by appropriately
identifying the edges of these hexagons, shown in Figure 1 below.

/\

\,

,,'l'a ,4\ ,,l\
'- N\/ i\l/l \\4\vr' \W \W

?''(u\

-1^\ AI \ lVI I v-l Ltf\',.
\*/ \)

Figure 1

A triangulation of U lifts to the same triangulation on each hexagon in ϕ−1(U), which then
glues together to a triangulation of C, illustrated in Figure 2.

/\

\,

,,'l'a ,4\ ,,l\
'- N\/ i\l/l \\4\vr' \W \W

?''(u\

-1^\ AI \ lVI I v-l Ltf\',.
\*/ \)

Figure 2
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This shows

χC = #Ṽ −#Ẽ + #F̃ = 4− 24 + 16 = 4(χP1)− 4(4− 1) = −4

Thus C has Euler characteristic −4, and so the genus of C is 1
2(2 − (−4)) = 3, which agrees

with the degree-genus formula. Additionally, by applying the identifications on the hexagons
above, we can visualize C in R3 in the following way.

/\

\,

,,'l'a ,4\ ,,l\
'- N\/ i\l/l \\4\vr' \W \W

?''(u\

-1^\ AI \ lVI I v-l Ltf\',.
\*/ \)

4. A family of curves as a holomorphic family

In this section we introduce a generalization of our curves Cd from the previous sections.
Consider the family

E = {([x : y : z], t) | yd = x(x− z)(x− tz)zd−3} ⊆ P2 × Ĉ, (4.1)

When t 6= 0, 1,∞, each curve yd = x(x − z)(x − tz)zd−3 is nonsingular, by the argument in
Footnote 1. Then, by the degree-genus formula (Theorem 3.2), each curve is a smooth, closed
surface of genus g = 1

2(d − 1)(d − 2). Let B = Ĉ − {0, 1,∞}. Then p : E → B, the map
([x : y : z], t) 7→ t, defines a surface bundle Σg → E → B.

Each fiber p−1(t) of p : E → B carries a complex structure, constructed in the same way as
for p−1(2) = Cd in Section 2, and these structures vary holomorphically with t. Thus the total
space E can be given the structure of a complex 2-manifold. A surface bundle which satisfies
these condtions is called a holomorphic family of Riemann surfaces.

While any two fibers of such a family are diffeomorphic to each other, they are not necessarily
isomorphic as Riemann surfaces; isomorphism in this sense is a much stronger condition. This
richer structure of holomorphic families leads to the following definitions.

Definition 4.2. If each point t ∈ B has a neighborhood U such that p : p−1(U) → U is
isomorphic to p : p−1(t) × U → U as holomorphic families, then p : E → B is locally trivial.
If we assume B is connected, this condition implies any two fibers p−1(t) and p−1(s) are
isomorphic as Riemann surfaces. If p : E → B is not locally trivial, we say it is truly varying.

Example 4.3. Let p : E → B be the holomorphic family defined in (4.1). The complex
structure of each fiber p−1(t) = Cd is the pullback by ϕ of that on P1, where ϕ : Cd → P1

is a d-fold branched cover over {0, 1,∞, t}. Then if p−1(t) and p−1(s) are isomorphic as
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Riemann surfaces, their structures are lifted from isomorphic structures on P1 − {0, 1,∞, t}
and P1 − {0, 1,∞, s}, respectively.

The space of complex structures on P1 (or equivalently, Ĉ) with four removed points, up to
biholomorphic equivalence, is parametrized by t ∈ B, since any triple of points p, q, r ∈ P1 can
be taken biholomorphically to the triple 0, 1,∞ by a unique Möbius transformation. Thus in
fact t = s, so p−1(t) and p−1(s) are the same fiber. This shows our family p : E → B is an
example of a truly varying holomorphic family.

5. The mapping class group and the monodromy of a surface bundle

In the last example of Section 4, we observe that as t varies in the base space B, the
complex structure on the fiber p−1(t) varies as well. One might ask what happens to the
complex structure on the fiber when t travels around a closed loop in B, and in particular,
a closed loop which is not null-homotopic. It turns out this determines a diffeomorphism on
p−1(t), which, up to isotopy, is uniquely determined by the homotopy class of the loop in B.
In this last section we will study which such isotopy classes of diffeomorphisms can arise in
this way, specifically in the case of two holomorphic families.

We begin with the following definition.

Definition 5.1. Let S be a smooth surface. Then the mapping class group Mod(S) is the
group of isotopy classes of orientation-preserving diffeomorphisms of S (which fix ∂S).

The mapping class group is a topological invariant and an object of ubiquity in surface
topology. Although elements of Mod(S) are isotopy classes of diffeomorphisms, we will often
refer to them by specific diffeomorphisms, and it is understood the isotopy class is meant.
The process described above gives a well-defined homomorphism ρ : π1(B, t)→ Mod(p−1(t)).
When B is connected, ρ is independent of choice of t, so if p−1(t) is a genus g surface, we have
a homomorphism ρ : π1(B)→ Mod(Σg).

Definition 5.2. The homomorphism ρ : π1(B) → Mod(Σg) is called the monodromy of the
holomorphic family Σg → E → B.

Example 5.3. Consider the holomorphic family

E = {y2 = (x− 1)(x2 − t) | (x, y, t) ∈ C2 ×B},

where B = Ĉ−{0, 1,∞} and p : E → B is given by p(x, y, t) = t. By the degree-genus formula
(Theorem 3.2), the fibers of this family are genus 1 Riemann surfaces.

As the fundamental group π1(B) is the free group on two generators (namely the loops σ
and τ in Figure 3, based at 1/2), in order to compute ρ : π1(B) → Mod(T 2), it suffices to
determine the images of these two loops.

For t ∈ B, p−1(t) is a two-sheeted branched cover of Ĉ− {1,∞,
√
t,−
√
t}, which is realized

by the hyperelliptic involution h shown in Figure 4.
This branched cover lifts to a fiberwise branched cover of our bundle p : E → B over the

bundle p′ : E′ → B, where a fiber of E′ is the sphere with four marked points, which we
will denote just by S2. Via h, any diffeomorphism α in the image of ρ′ : π1(B) → Mod(S2)
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I r''"

Figure 3

I r''"

Figure 4

corresponds to a diffeomorphism α̃ of T 2 such that the diagram

T 2

h
��

α̃ // T 2

h
��

S2 α // T 2

commutes, and vice versa. As h itself is a diffeomorphism of T 2, and therefore an element
of Mod(T 2), this means that every α̃ in the image of ρ must have an isotopy-equivalent
representative which commutes with h. Every diffeomorphism of T 2 which commutes with h
descends to a diffeomorphism of S2, so we can define a map π : C(h)→ Mod(S2), where C(h)
denotes the centralizer of h in Mod(T 2). The only nontrivial diffeomorphism in C(h) which
lies in the kernel of π is the hyperelliptic involution h itself, so we have an exact sequence

1 // 〈h〉 // C(h)
π // Mod(S2).

This gives the factorization ρ′ = π ◦ ρ. Thus once we determine the monodromy ρ′, it is just a
matter of lifting via h the diffeomorphisms in the image of ρ′ to ones on T 2 to determine the
monodromy ρ.
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I r''"

Figure 5

i*,1

Figure 6
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t---r .!\

.';-,)'

Figure 7

To compute ρ′, we just need to determine ρ′(σ) and ρ′(τ). Figures 5 and 6 illustrate the

diffeomorphisms of Ĉ − {1,∞,
√

1/2,−
√

1/2} determined by σ and τ . We see that ρ′(σ) is

a diffeomorphism which interchanges
√

1/2 and −
√

1/2 while fixing 1 and ∞ and ρ′(τ) is a

diffeomorphism which fixes 1 and ∞ and moves
√

1/2 around 1 once.2

Finally, it remains to find lifts of ρ′(σ) and ρ′(τ) in Mod(T 2), namely elements of Mod(T 2)
which cover these diffeomorphisms under the branched cover T 2 → S2. These are illustrated
in Figure 7: ρ(σ) is a Dehn twist around the curve α and ρ(τ) is the square of a Dehn twist
around β.

We conclude this paper by computing the monodromy for the holomorphic family (4.1) for
the case d = 4.

2These mapping classes are commonly referred to a half twist and a whole twist, respectively. The reasoning
for this naming comes from the canonical identification of the mapping class group of Ĉ−{1,∞,

√
1/2,−

√
1/2}

with the braid group on three strands, with strands corresponding to 1,
√

1/2, and −
√

1/2; a half twist (re-
spectively, whole twist) is an operation on the braid which interchanges two adjacent strands once (respectively,
twice).



FAMILIES OF ALG. CURVES AS SURFACE BUNDLES 11

Example 5.4. Let B = Ĉ− {0, 1,∞} and let

E = {([x : y : z], t) | y4 = x(x− z)(x− tz)z},
with p : E → B defined by p([x : y : z], t) = t. By the degree-genus formula (Theorem 3.2), a
fiber p−1(t) is a genus 3 surface.

The fundamental group of B, which is the same as in the preceding Example 5.3, is freely
generated by the loops σ and τ based at 1/2. Then to compute the monodromy ρ : π1(B)→
Mod(Σ3) we just need to find the images of σ and τ .

/\

\,

,,'l'a ,4\ ,,l\
'- N\/ i\l/l \\4\vr' \W \W

?''(u\

-1^\ AI \ lVI I v-l Ltf\',.
\*/ \)

Figure 8

In Example 3.4, we constructed the fiber p−1(2) = Σ3 as the identification space of four
hexagons with identified edges. A similar construction may be done for every fiber p−1(t).
This shows each fiber is a four-sheeted branched cover over S2 with branch points {0, 1,∞, t},
which is attained by the order 4 diffeomorphism h illustrated in Figure 8.

As in Example 5.3, this branched cover allows us to lift diffeomorphisms of S2 which (setwise)
fix {0, 1/2, 1,∞} to ones of p−1(1/2) = Σ3 using h. So we begin by computing the monodromy
ρ′ : π1(B)→ Mod(S2).

Figure 9 shows that the loop σ corresponds to a diffeomorphism of S2 which moves the
point 1/2 around 0 once and fixes 1 and∞, a whole twist exchanging 0 and 1/2. Analogously,
τ induces a diffeomorphism which moves 1/2 around 1 once and fixes 0 and ∞, a whole twist
exchanging 1/2 and 1.

Finally, Figure 10 illustrates how to use h to lift ρ′(σ) to a diffeomorphism of Σ3, the product
of Dehn twists Tα1 , Tα2 , Tα3 , and Tα4 . ρ′(τ) can be lifted similarly. These then determine the
monodromy ρ : π1(B)→ Mod(Σ3).
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Figure 9

Figure 10


