Surface embeddings in \mathbb{R}^3 via the lens of the crease set

Margaret Nichols Joint with William Menasco University at Buffalo 25 June 2021

The *crease set* \mathscr{C} *of* $\varphi : S \hookrightarrow \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ *captures how* S "folds" under a fixed projection $p: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$.

The *crease set* \mathscr{C} *of* $\varphi : S \hookrightarrow \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ *captures how* S "folds" under a fixed projection $p: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$.

– disjoint system of simple closed curves in *S*

The *crease set* \mathscr{C} *of* $\varphi : S \hookrightarrow \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ *captures how* S "folds" under a fixed projection $p: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$.

– disjoint system of simple closed curves in *S*

The *crease set* \mathscr{C} *of* $\varphi : S \hookrightarrow \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ *captures how* S "folds" under a fixed projection $p: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$.

The *crease set* \mathscr{C} *of* $\varphi : S \hookrightarrow \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ *captures how* S "folds" under a fixed projection $p: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$.

– disjoint system of simple closed curves in *S*

The *crease set* \mathscr{C} *of* $\varphi : S \hookrightarrow \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ *captures how* S "folds" under a fixed projection $p: \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$.

– disjoint system of simple closed curves in *S*

1. Classify $\mathscr C$ via its geometric and topological properties (number of components, configuration, …)

1. Classify $\mathscr C$ via its geometric and topological properties (number of components, configuration, …)

2. Exploit the structure to simplify $\varphi: S \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$ (reduce projection intersections and number of components of \mathscr{C})

1. Classify $\mathscr C$ via its geometric and topological properties (number of components, configuration, …)

2. Exploit the structure to simplify $\varphi: S \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$ (reduce projection intersections and number of components of $\mathcal C$)

3. Use as a new approach to study links $L\subset S^3$ (unknot detection, composite knot crossing number, cabling conj., …)

1. Classify $\mathscr C$ via its geometric and topological properties (number of components, configuration, …)

- 2. Exploit the structure to simplify $\varphi: S \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$ (reduce projection intersections and number of components of $\mathcal C$)
- 3. Use as a new approach to study links $L \subset S^3$
(unknot detection, composite knot crossing number, cabling conj., ...) 3. Use as a new approach to study links (unknot detection, composite knot crossing number, cabling conj., …) $L \subset S^3$

- 1. Classify $\mathscr C$ via its geometric and topological properties (number of components, configuration, …)
- 2. Exploit the structure to simplify $\varphi : S \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$
(reduce projection intersections and number of components of \mathcal{C}) 2. Exploit the structure to simplify (reduce projection intersections and number of components of \mathscr{C}) $\varphi: S \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$
- 3. Use as a new approach to study links $L \subset S^3$
(unknot detection, composite knot crossing number, cabling conj., ...) 3. Use as a new approach to study links (unknot detection, composite knot crossing number, cabling conj., …) $L \subset S^3$

Regular isotopy

Condition: $\mathscr C$ preserved by isotopy

Condition: $\mathscr C$ preserved by isotopy

Regular isotopy

Condition: $\mathscr C$ preserved by isotopy

Question: What geometric & topological data can we read off of \mathcal{C} ?

Question: What geometric & topological data can we read off of \mathcal{C} ?

Question: What data are sufficient to determine φ up to regular isotopy?

Question: What geometric & topological data can we read off of \mathcal{C} ?

Question: What data are sufficient to determine φ up to regular isotopy?

Question: Which $\mathscr C$ actually arise? Are there restrictions on the determining data?

Question: What geometric & topological data can we read off of \mathcal{C} ?

Question: What geometric & topological data can we read off of \mathcal{C} ?

Theorem (Menasco–N.):

The configuration of $\mathscr{C}\subset S^2$ determines the turning n umber $t(\gamma)$ for all $\gamma \in \mathscr{C}.$

Question: What geometric & topological data can we read off of \mathcal{C} ?

Theorem (Menasco–N.):

The configuration of $\mathscr{C}\subset S^2$ determines the turning n umber $t(\gamma)$ for all $\gamma \in \mathscr{C}.$

(Technically, $p(\varphi(\gamma))$, oriented so $p(\varphi(S^2))$ locally lies to its left)

Question: What geometric & topological data can we read off of \mathcal{C} ?

Theorem (Menasco–N.):

The configuration of $\mathscr{C}\subset S^2$ determines the turning

 n umber $t(\gamma)$ for all $\gamma \in \mathscr{C}.$

(Technically, $p(\varphi(\gamma))$, oriented so $p(\varphi(S^2))$ locally lies to its left)

Question: What geometric & topological data can we read off of \mathcal{C} ?

Theorem (Menasco–N.):

The configuration of $\mathscr{C}\subset S^2$ determines the turning n umber $t(\gamma)$ for all $\gamma \in \mathscr{C}.$

(Technically, $p(\varphi(\gamma))$, oriented so $p(\varphi(S^2))$ locally lies to its left)

Turning number is *preserved* by regular isotopy!

Question: What geometric & topological data can we read off of \mathcal{C} ?

Theorem (Menasco–N.):

The configuration of $\mathscr{C}\subset S^2$ determines the turning n umber $t(\gamma)$ for all $\gamma \in \mathscr{C}.$

In particular,

$$
\sum_{\gamma \in \mathscr{C}} t(\gamma) = 1 \quad \text{and} \quad \sum_{\gamma \in \partial S} t(\gamma) = \chi(S)
$$

for every component $S \subset S^2 - \mathcal{C}$.

Question: What geometric & topological data can we read off of \mathcal{C} ?

Theorem (Menasco–N.):

The configuration of $\mathscr{C}\subset S^2$ determines the turning n umber $t(\gamma)$ for all $\gamma \in \mathscr{C}.$

In particular,

$$
\sum_{\gamma \in \mathscr{C}} t(\gamma) = 1 \quad \text{and} \quad \sum_{\gamma \in \partial S} t(\gamma) = \chi(S)
$$

for every component $S \subset S^2 - \mathcal{C}$.

Idea: Gauss–Bonnet

Question: Which & actually arise?

Question: Which $\mathscr C$ actually arise?

Theorem (Menasco–N.):

Any system of $2k+1$ disjoint simple closed curves $\mathscr{C}\subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi: S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$.

Question: Which $\mathscr C$ actually arise?

Theorem (Menasco–N.):

Any system of $2k+1$ disjoint simple closed curves $\mathscr{C}\subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi: S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$.

$$
\sum_{\gamma \in \mathscr{C}} t(\gamma) = 1 \quad \text{and} \quad \sum_{\gamma \in \partial S} t(\gamma) = \chi(S)
$$
\nfor every component $S \subset S^2 - \mathscr{C}$.

Question: Which $\mathscr C$ actually arise?

Theorem (Menasco–N.):

Any system of $2k+1$ disjoint simple closed curves $\mathscr{C}\subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi: S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$.

Question: Which $\mathscr C$ actually arise?

Theorem (Menasco–N.):

Any system of $2k+1$ disjoint simple closed curves $\mathscr{C}\subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi: S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$.

Question: Which $\mathscr C$ actually arise?

Theorem (Menasco–N.):

Any system of $2k+1$ disjoint simple closed curves $\mathscr{C}\subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi: S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$.

Question: Which $\mathscr C$ actually arise?

Theorem (Menasco–N.):

Any system of $2k+1$ disjoint simple closed curves $\mathscr{C}\subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi: S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$.

Question: Which $\mathscr C$ actually arise?

Theorem (Menasco–N.):

Any system of $2k+1$ disjoint simple closed curves $\mathscr{C}\subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi: S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$.

Characterization

Question: What data are sufficient to determine φ up to regular isotopy?

…

Question: What data are sufficient to determine φ up to regular isotopy?

Conjecture: Completely characterized by crease set configuration

Characterization

…

Question: What data are sufficient to determine φ up to regular isotopy?

Conjecture: Completely characterized by crease set configuration

Conjecture: Completely characterized by crease set configuration and folding orientations.

Conjecture: Completely characterized by crease set configuration and folding orientations.

Conjecture: Completely characterized by crease set configuration and folding orientations.

The *folding orientation* of $γ ∈ ℓ: +$

Question: Which $\mathscr C$ actually arise?

Conjecture: Completely characterized by crease set configuration and folding orientations.

The *folding orientation* of $γ ∈ ℓ: +$

Question: Which $\mathscr C$ actually arise?

■ Need to understand constraints from folding orientations.

Question: Can we remove the "excess crossings" of (the projection of) 8?

Question: Can we remove the "excess crossings" of (the projection of) 8?

vs.

Question: Can we remove the "excess crossings" of (the projection of) \mathscr{C} ?

Key tool: *transverse foliations*

A singular foliation ${\mathscr F}$ of S with leaves given by the level curves of a "horizontal direction" $h:\mathbb{R}^3\to\mathbb{R}$.

Question: Can we remove the "excess crossings" of (the projection of) \mathscr{C} ?

A singular foliation ${\mathscr F}$ of S with leaves given by the level curves of a "horizontal direction" $h:\mathbb{R}^3\to\mathbb{R}$.

 $\mathscr F$ is transverse to except at singularities

Transverse foliations

Count the singularities $s(\gamma)$ along $\gamma \in \mathcal{C}$:

 $s(\gamma) \geq 2 |t(\gamma)|$

Transverse foliations

Count the singularities $s(\gamma)$ along $\gamma \in \mathcal{C}$:

 $s(\gamma) \geq 2 |t(\gamma)|$

Question: Can we reduce the number of curves of \mathcal{C} ?

(With an eye toward interactions with an ambient link.)

Question: Can we reduce the number of curves of \mathcal{C} ?

(With an eye toward interactions with an ambient link.)

Thank you!