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Question:  What data are sufficient to determine  up to 
regular isotopy?

φ

Question:  Which  actually arise? Are there restrictions on 
the determining data?

𝒞
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(Technically, , oriented so  locally lies to its left)p(φ(γ)) p(φ(S2))
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Theorem (Menasco–N.):

The configuration of  determines the turning 
number  for all .

𝒞 ⊂ S2

t(γ) γ ∈ 𝒞

In particular,

∑
γ∈𝒞

t(γ) = 1 ∑
γ∈∂S

t(γ) = χ(S)and

for every component .S ⊂ S2 − 𝒞

Question: What geometric & topological data can we read 
off of ?𝒞

Idea: Gauss–Bonnet
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Characterization

Question:  What data are sufficient to determine  up to 
regular isotopy?

φ

Conjecture: Completely characterized by crease set configuration 
and folding orientations.

Question:  Which  actually arise?𝒞
➡ Need to understand constraints from folding orientations.

The folding orientation of :γ ∈ 𝒞 + −
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Key tool: transverse foliations

A singular foliation  of  with leaves given by the level curves 
of a “horizontal direction” . 

ℱ S
h : ℝ3 → ℝ

h

 is transverse to  
except at singularities
ℱ 𝒞
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Transverse foliations

No excess crossings

Count the singularities  along :s(γ) γ ∈ 𝒞

vs.

h

s(γ) ≥ 2 | t(γ) |

  
for all 

s(γ) = 2 | t(γ) |
γ ∈ 𝒞⟺
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Thank you!


