Surface embeddings in \mathbb{R}^3 via the lens of the crease set

Margaret Nichols Joint with William Menasco University at Buffalo 25 June 2021 The crease set \mathscr{C} of $\varphi : S \hookrightarrow \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ captures how S "folds" under a fixed projection $p : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$.

The crease set \mathscr{C} of $\varphi : S \hookrightarrow \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ captures how S "folds" under a fixed projection $p : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$.

 ${\ensuremath{\mathscr{C}}}$ – disjoint system of simple closed curves in S

The crease set \mathscr{C} of $\varphi : S \hookrightarrow \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ captures how S "folds" under a fixed projection $p : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$.

 ${\ensuremath{\mathscr{C}}}$ – disjoint system of simple closed curves in S

The crease set \mathscr{C} of $\varphi : S \hookrightarrow \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ captures how S "folds" under a fixed projection $p : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$.

The crease set \mathscr{C} of $\varphi : S \hookrightarrow \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ captures how S "folds" under a fixed projection $p : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$.

 $\ensuremath{\mathscr{C}}$ – disjoint system of simple closed curves in S

The crease set \mathscr{C} of $\varphi : S \hookrightarrow \mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ captures how S "folds" under a fixed projection $p : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$.

 $\ensuremath{\mathscr{C}}$ – disjoint system of simple closed curves in S

1. Classify & via its geometric and topological properties (number of components, configuration, ...)

1. Classify & via its geometric and topological properties (number of components, configuration, ...)

2. Exploit the structure to simplify $\varphi : S \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$ (reduce projection intersections and number of components of \mathscr{C})

1. Classify & via its geometric and topological properties (number of components, configuration, ...)

2. Exploit the structure to simplify $\varphi : S \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$ (reduce projection intersections and number of components of \mathscr{C})

3. Use as a new approach to study links $L \subset S^3$ (unknot detection, composite knot crossing number, cabling conj., ...)

1. Classify & via its geometric and topological properties (number of components, configuration, ...)

2. Exploit the structure to simplify $\varphi : S \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$ (reduce projection intersections and number of components of \mathscr{C})

3. Use as a new approach to study links $L \subset S^3$ (unknot detection, composite knot crossing number, cabling conj., ...)

1. Classify & via its geometric and topological properties (number of components, configuration, ...)

- 2. Exploit the structure to simplify $\varphi : S \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$ (reduce projection intersections and number of components of \mathscr{C})
- 3. Use as a new approach to study links $L \subset S^3$ (unknot detection, composite knot crossing number, cabling conj., ...)

Regular isotopy

Condition: & preserved by isotopy

Condition: C preserved by isotopy

Regular isotopy

Condition: C preserved by isotopy

Goal 1: Classify &

Goal 1: Classify &

Question: What geometric & topological data can we read off of \mathscr{C} ?

Goal 1: Classify ${\mathscr C}$

Question: What geometric & topological data can we read off of \mathscr{C} ?

Question: What data are sufficient to determine φ up to regular isotopy?

Goal 1: Classify \mathscr{C}

Question: What geometric & topological data can we read off of \mathscr{C} ?

Question: What data are sufficient to determine φ up to regular isotopy?

Question: Which & actually arise? Are there restrictions on the determining data?

Question: What geometric & topological data can we read off of \mathscr{C} ?

Question: What geometric & topological data can we read off of \mathscr{C} ?

Theorem (Menasco–N.):

The configuration of $\mathscr{C} \subset S^2$ determines the turning number $t(\gamma)$ for all $\gamma \in \mathscr{C}$.

Question: What geometric & topological data can we read off of \mathscr{C} ?

Theorem (Menasco–N.):

The configuration of $\mathscr{C} \subset S^2$ determines the turning number $t(\gamma)$ for all $\gamma \in \mathscr{C}$.

(Technically, $p(\varphi(\gamma))$, oriented so $p(\varphi(S^2))$ locally lies to its left)

Question: What geometric & topological data can we read off of \mathscr{C} ?

Theorem (Menasco–N.):

The configuration of $\mathscr{C} \subset S^2$ determines the turning

number $t(\gamma)$ for all $\gamma \in \mathscr{C}$.

(Technically, $p(\varphi(\gamma))$, oriented so $p(\varphi(S^2))$ locally lies to its left)

Question: What geometric & topological data can we read off of \mathscr{C} ?

Theorem (Menasco–N.):

The configuration of $\mathscr{C} \subset S^2$ determines the turning

number $t(\gamma)$ for all $\gamma \in \mathscr{C}$.

(Technically, $p(\varphi(\gamma))$, oriented so $p(\varphi(S^2))$ locally lies to its left)

Turning number is *preserved* by regular isotopy!

Question: What geometric & topological data can we read off of \mathscr{C} ?

Theorem (Menasco–N.):

The configuration of $\mathscr{C} \subset S^2$ determines the turning number $t(\gamma)$ for all $\gamma \in \mathscr{C}$.

In particular,

$$\sum_{\gamma \in \mathscr{C}} t(\gamma) = 1 \quad \text{and} \quad \sum_{\gamma \in \partial S} t(\gamma) = \chi(S)$$

for every component $S \subset S^2 - \mathscr{C}$.

Question: What geometric & topological data can we read off of \mathscr{C} ?

Theorem (Menasco–N.):

The configuration of $\mathscr{C} \subset S^2$ determines the turning number $t(\gamma)$ for all $\gamma \in \mathscr{C}$.

In particular,

$$\sum_{\gamma \in \mathscr{C}} t(\gamma) = 1 \quad \text{and} \quad \sum_{\gamma \in \partial S} t(\gamma) = \chi(S)$$

for every component $S \subset S^2 - \mathscr{C}$.

Idea: Gauss-Bonnet

Question: Which \mathscr{C} actually arise?

Question: Which & actually arise?

Theorem (Menasco–N.):

Any system of 2k + 1 disjoint simple closed curves $\mathscr{C} \subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi : S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$. Question: Which & actually arise?

Theorem (Menasco–N.):

Any system of 2k + 1 disjoint simple closed curves $\mathscr{C} \subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi : S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$.

$$\sum_{\gamma \in \mathscr{C}} t(\gamma) = 1 \qquad \text{and} \qquad \sum_{\gamma \in \partial S} t(\gamma) = \chi(S)$$
for every component $S \subset S^2 - \mathscr{C}$.

Question: Which \mathscr{C} actually arise?

Theorem (Menasco–N.):

Any system of 2k + 1 disjoint simple closed curves $\mathscr{C} \subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi : S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$.

Question: Which \mathscr{C} actually arise?

Theorem (Menasco–N.):

Any system of 2k + 1 disjoint simple closed curves $\mathscr{C} \subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi : S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$.

Question: Which \mathscr{C} actually arise?

Theorem (Menasco–N.):

Any system of 2k + 1 disjoint simple closed curves $\mathscr{C} \subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi : S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$.

Question: Which \mathscr{C} actually arise?

Theorem (Menasco–N.):

Any system of 2k + 1 disjoint simple closed curves $\mathscr{C} \subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi : S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$.

Question: Which \mathscr{C} actually arise?

Theorem (Menasco–N.):

Any system of 2k + 1 disjoint simple closed curves $\mathscr{C} \subset S^2$ admitting a valid turning number function can be realized as the crease set of some $\varphi : S^2 \hookrightarrow \mathbb{R}^2 \times \mathbb{R}$.

Characterization

Question: What data are sufficient to determine φ up to regular isotopy?

• • •

Question: What data are sufficient to determine φ up to regular isotopy?

Conjecture: Completely characterized by crease set configuration

Characterization

. . .

Question: What data are sufficient to determine φ up to regular isotopy?

Conjecture: Completely characterized by crease set configuration

Conjecture: Completely characterized by crease set configuration and folding orientations.

Conjecture: Completely characterized by crease set configuration and folding orientations.

Conjecture: Completely characterized by crease set configuration and folding orientations.

The folding orientation of $\gamma \in \mathscr{C}$:

Question: Which \mathscr{C} actually arise?

Conjecture: Completely characterized by crease set configuration and folding orientations.

The folding orientation of $\gamma \in \mathscr{C}$:

Question: Which & actually arise?

Need to understand constraints from folding orientations.

Question: Can we remove the "excess crossings" of (the projection of) \mathscr{C} ?

Question: Can we remove the "excess crossings" of (the projection of) \mathscr{C} ?

VS.

Question: Can we remove the "excess crossings" of (the projection of) \mathscr{C} ?

Key tool: transverse foliations

A singular foliation \mathscr{F} of S with leaves given by the level curves of a "horizontal direction" $h : \mathbb{R}^3 \to \mathbb{R}$.

Question: Can we remove the "excess crossings" of (the projection of) \mathscr{C} ?

A singular foliation \mathscr{F} of S with leaves given by the level curves of a "horizontal direction" $h : \mathbb{R}^3 \to \mathbb{R}$.

 \mathcal{F} is transverse to \mathcal{C} except at singularities

Transverse foliations

Count the singularities $s(\gamma)$ along $\gamma \in \mathscr{C}$:

 $s(\gamma) \ge 2 | t(\gamma) |$

Transverse foliations

Count the singularities $s(\gamma)$ along $\gamma \in \mathscr{C}$:

 $s(\gamma) \ge 2 | t(\gamma) |$

Question: Can we reduce the number of curves of \mathscr{C} ?

(With an eye toward interactions with an ambient link.)

Question: Can we reduce the number of curves of C?

(With an eye toward interactions with an ambient link.)

Thank you!