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Abstract. This is an investigation into a classification of embeddings of a surface in
Euclidean 3-space. Specifically, we consider R3 as having the product structure R2 × R
and let π : R2 × R → R2 be the natural projection map onto the Euclidean plane. Let
ε : Sg ↪→ R2 ×R be a smooth embedding of a closed oriented genus g surface such that the
set of critical points for the map π ◦ ε is a smooth (possibly multi-component) 1-manifold,
C ⊂ Sg. We say C is the crease set of ε and two embeddings are in the same isotopy
class if there exists an isotopy between them that has C being an invariant set. The case
where π ◦ ε|C restricts to an immersion is readily accessible, since the turning number
function of a smooth curve in R2 supplies us with a natural map of components of C into
Z. The Gauss-Bonnet Theorem beautifully governs the behavior of π ◦ ε(C ), as it implies
χ(Sg) = 2

∑
γ∈C t(π ◦ ε(γ)), where t is the turning number function. Focusing on when

Sg ∼= S2, we give a necessary and sufficient condition for when a disjoint collection of curves
C ⊂ S2 can be realized as the crease set of an embedding ε : S2 ↪→ R2 × R. From there,
we give the classification of all isotopy classes of embeddings when C ⊂ S2 and |C | = 3—a
simple yet enlightening case. As a teaser of future work, we give an application to knot
projections and discuss directions for further investigation.

1. Introduction

crease set

crease set

π

R2 R2

Figure 1. The left illustration shows a generic neighborhood of a point in the
crease set and its corresponding projection into R2. The right illustration shows the
neighborhood of a corner-point in the crease set and its corresponding projection
into R2.

1.1. Initial discussion of main results. We let ε : Sg ↪→ R2 × R(∼= R3) be a smooth
embedding of a closed surface of genus g. Let π : R2 × R → R2 be the natural projection
coming from the product structure. Let C ⊂ Sg be the critical point set of π ◦ ε—the set of
points, x ∈ Sg, where the differential, d(π ◦ ε)x : Tx(Sg)) ↪→ Tπ◦ε(x)(R2) is not a surjective
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map. We will refer to C as the crease set of ε. By general position arguments we can
assume ε(C ) ⊂ R2 × R is a collection of smooth simple closed curves (s.c.c.’s) with a finite
collection of marked corners—points where the immersion of the crease set into the plane,
(π ◦ ε)(C ) ⊂ R2, fails to be smooth, with a local picture as in Fig. 1 . Moreover, we may
assume that the only multi-point images of the projected crease set are transverse double
points. We refer to such well-behaved embeddings as regular.

bar that forces dimple

Figure 2. The crease curve, shown in green, projects to a piecewise smooth curve.

The simplest, yet still interesting, example might be an embedding of the 2-sphere, S2(=
S0), that has its crease set a single curve with two corners. (See Fig. 2 .) To metaphorically
describe how this embedding might be obtained, one starts with the standard unit sphere in
R3 centered at the origin. The reader could image forming a dimple in the “clay ball” the
sphere bounds by taking a tilted rigid bar—say having a core line of {y+ z = 1, x = 1.5}—
and pushing it into the ball via parallel translate from x = 1.5 to x = 0. Clay being clay, the
bar deforms the round ball so that a dimple is created in the sphere. The crease curve—the
equator of S2 before this deformation—appears deformed by a type-I Reidemeister isotopy
move. The new crease set projects to R2 with a single double-point crossing.

This note is an initial investigation into the classification of isotopy classes of regular
surface embeddings into R2 × R. Specifically, we will consider two regular embeddings,
ε0, ε1 : Sg ↪→ R2 × R, to be in the same isotopy class if there is a smooth isotopy εt : Sg →
R2 × R, 0 ≤ t ≤ 1, such that the marked structure of C ⊂ Sg, as the critical set of εt, is
invariant for t ∈ [0, 1]—we say such an isotopy is regular. The number of corners of a crease
component is unchanged by such an isotopy, and in particular, the equatorial crease set of
the standard unit sphere and the two-corner crease set of the dimpled sphere are in different
isotopy classes.

For a given Sg and ε, and for a connected component γ ⊂ C , let N(γ) be a closed annular
neighborhood of γ that is sufficiently small so that N ∩ C = γ. Let {γ̂, γ̂′} = ∂N . In §2.3 

we give a scheme for assigning an orientation to each component of ∂N . For such oriented
curves we can then define a “turning number” for their projections to R2 of their embeddings
into R2×R. We will then have a naturally associated 2-tuple, (t(γ̂), t(γ̂′)) ∈ Z2—the turning
numbers associated with γ. (Please see §2 for precise definitions.) In the sphere-with-dimple
example, this 2-tuple is (1, 1) for the single component of C .

When we restrict a regular isotopy to a smooth oriented curve in Sg, its turning number
will be invariant. As such, we will see that our 2-tuple is invariant within the isotopy
class of an embedding. The starting point for our investigation will be the establishment of
relationships between our turning number 2-tuple and the Euler characteristic of the surface,
χ(Sg). Specifically,
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(1.1) χ(Sg) =
∑
γ∈C

t(γ̂) + t(γ̂′).

This equality is restated in Theorem 4.3 . It is properly seen as a Gauss-Bonnet type equation
that governs the behavior of embeddings of Sg into R2×R. Thus, we say that a 2-tuple weight
assignment to components of C which satisfies the equations of Theorem 4.3 corresponds to
a Gauss-Bonnet weighting of C .

When we restrict to embedding classes of S2 into R2 × R, Equ. 1.1 becomes χ(S2) = 2.
We then have the following natural questions.

1. Given an collection of disjoint s.c.c.’s with corners, C ⊂ S2, when is there a Gauss-
Bonnet weighting of C ?

2. Given a collection of s.c.c.’s with corners, C ⊂ S2, that has a Gauss-Bonnet weighting,
is there an embedding, ε : S2 ↪→ R2 × R, that realizes C as a crease set of ε?

Focusing on question 1, it is easy to produce collections that do not have any Gauss-
Bonnet weightings—three non-concentric circles in S2 for example. However, when such a
weighting exists it is unique.

Theorem 1.1. A Gauss-Bonnet weighting on a collection of disjoint s.c.c.’s with corners in
S2 is uniquely determined.

Let (S2,C ) and (S2,C ′) be two pairs of 2-sphere/collection of disjoint smooth marked
s.c.c.’s. Assume each pair has a Gauss-Bonnet weighting. We say the two pairs are equivalent
crease set configurations if there exists a diffeomorphism of pairs, h : (S2,C ) ↪→ (S2,C ′).
With this equivalence in mind, Theorem 1.1 can be leveraged to prove the following finiteness
result. For its statement, we denote the number of corners of curve γ ∈ C as c(γ)(∈ N).

Theorem 1.2. Let nc, nt ⊂ N be two arbitrary integers. Then there are only finitely many
possible crease set configurations in S2 such that |C | ≤ nt and

∑
γ∈C c(γ) ≤ nc.

For our initial attempt at answering question 2, we will simplify to the special case where
C ⊂ S2 is a collection of disjoint s.c.c.’s without any corners. In this case, for a component,
γ ∈ C , we will have t(γ̂) = t(γ̂′).

In this simplified case we have the following main result.

Theorem 1.3. For any collection of disjoint smooth s.c.c.’s C ⊂ S2 admitting a Gauss-
Bonnet weighting, there exists a regular embedding, ε : S2 ↪→ R2 × R, which realizes C as
the crease set with the corresponding Gauss-Bonnet weighting. That is, for each γ ∈ C , t(γ)
is equal to its weight.

We will establish Theorem 1.3 by construction. Our constructive argument will yield
regular embeddings that are in an aesthetically nice form—the curvature function on each
component of π ◦ ε(C ) will never be zero.

Surprisingly (at least to the authors), this aesthetic feature is not always achievable.
In particular, the relatively simple situation when C ⊂ S2 is just three concentric circles
without corners there does exist an “non-intuitive” embedding where the curvature function
on π ◦ ε(C ) must have points of zero curvature. Regardless, it is still possible to perform
a calculation that gives a complete classification of the isotopy classes for when |C | = 3.
We view this novel calculation as prescient of what is possible for when |C | and genus are
higher.



4 MENASCO AND NICHOLS

Theorem 1.4. Up to reflection, there are exactly three isotopy classes of regular S2 embed-
dings into R2 × R when C is just three curves without corners.

As a final remark to the section, the authors have conducted a wide literature search
and have found no previous investigation into the critical set of π ◦ ε—the crease set—
with the exception of the recent contribution of Joel Hass [H ]. Since the Gauss-Bonnet
theorem is a classical premier result of differential topology that has produced a significant
body of applications and generalizations, this lack of previous interest in the crease set is
puzzling. Regardless, as the arguments in this paper will illustrate the crease set is a source
of significant control over the behavior and positioning of arbitrary surface embeddings in
R3.

1.2. A link projection application. Our original motivation for studying surface embed-
dings into R2 × R comes from knot theory. Early work of the first author developed a
“normal form” for representing essential surfaces in S3 link complements with respect to a
link projection [M1 ].

The key construction for this normal form involves positioning a link L to lie in R2 (coming
from its projection) except at crossings, where the two crossing strands lie on the boundary
of a small “crossing ball”. A surface S ⊂ R3 \L in normal form can be reconstructed entirely
from its intersections with R2 and these crossing balls. To set notation, let R2

+ (respectively,
R2
−) be R2 with each disk neighborhood of a crossing replaced by the upper (respectively,

lower) hemisphere of a crossing ball. The surface intersects R2
+ ∪R2

− in a graph, and when
in normal form the crease set is a collection of disjoint circuits/curves of this graph.

T

Figure 3. The blue and green curves depict S2 ∩ R2
+ with the green portion in-

dicating which part is contained in the crease set. There is an arbitrary 2-tangle
contained inside the ball labeled T .

In Fig. 3 we depict the regular projection (with the crossing ball structure) of a link
“template” realizing the dimpled S2 of Fig. 2 as a surface in normal form. The crease set
is a subset of the graph Γ = S2 ∩ (R2

+ ∩ R2
−) and corresponds to the green curve. Inside

the region of the link template labeled T we can place any 2-strand tangle. Thus, there are
infinitely many possible link projections that realize the dimpled S2 as a surface in normal
form. This example is illustrative of the general situation (Theorem 3.1 ) which we state here
in a more colloquial manner.
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Theorem 1.5. Every isotopy class of regular surface embeddings into R2×R can be realized
as in normal form with respect to infinitely many regular link projections.

1.3. Outline of paper. In §2 we give the formal definitions of the crease set and turning
number plus some additional concepts of our machinery. In §3 we give the proof of Theo-
rem 1.5 . In §4 we discuss the Gauss-Bonnet equations and results that are behind Equ. 1.1 ,
which we then use to prove Theorems 1.1 and 1.2 . Then in §5 we give a construction that
establishes Theorem 1.3 . In §6 we develop the additional machinery need to prove Theorem
1.4 . In particular, in §6.1 we observe that for each isotopy class of a regular embedding
of a surface into R2 × R there is an associated naturally embedded branched surface with
boundary. A salient feature of this natural branched surface is a correspondence between its
boundary and branching locus curves, and the components of the crease set. (The reader
may correctly suspect that the branched surface associated with the Fig. 2 embedding is
one containing the Lorenz template [G-L ].) Finally, in §9 we advance directions for further
investigation.
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2. Preliminaries

2.1. Definition of the crease set. Let Sg be a smooth closed oriented surface of genus g.
Let ε : Sg ↪→ R2×R be a smooth embedding and π : R2×R→ R2 be the natural projection
onto the first factor in the product structure.

Definition 2.1. The crease set C ⊂ Sg of ε (with respect to π) is the critical point set of
π ◦ ε.

We would like to restrict to embeddings where C is a nice subset of Sg—ideally, a smooth
submanifold.

Fix an embedding ε : Sg → R3. Note that for any matrix A ∈ SO(3), post-composing ε
by the map x 7→ Ax gives a new embedding, which we denote εA.

Let N : Sg → S2 denote the Gauss map corresponding to ε(Sg), so N(p) is the outward-
pointing unit normal vector to ε(p). Observe that C = N−1(Z), where Z ⊂ S2 denotes the
equator of S2.

Define f : Sg × SO(3) → S2 by f(p,A) = A · N(p). This map takes a point p to the
outward normal vector at ε(p), then rotates it by A. Alternatively, f maps p to its outward
unit normal vector in εA; seen this way, f parametrizes the Gauss maps associated to the
different embeddings εA.

We claim that f is a submersion. To see this, observe that df(p,A) restricted to T(p,A)SO(3)
already surjects: varying A infinitesimally directly corresponds to applying an infinitesimal
rotation to S2, perturbing f(p,A) in that direction.

As a submersion, f is consequently transverse to the equator Z ⊂ S2. By parametric
transversality, almost every f( · , A) is transverse to Z. For such f( · , A), the preimage of Z,
which is the crease set C corresponding to εA, is a smooth submanifold of Sg.
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In this case, π ◦ ε restricts to a smooth map on C . When d(π ◦ ε|C ) has rank 0, the
tangent line to C in ε(Sg) is vertical (with respect to π). These are precisely the points
where π ◦ ε(C ) may fail to be smooth. Notice that unless the local picture of ε(Sg) is like
that of the right-side illustration in Fig. 1 , ε can be perturbed by a generic small rotation to
remove this rank-0 point. A rank-0 point cannot be eliminated precisely when it corresponds
to a change in the sign of the crease set (see §2.2 ); we call such a point a corner of C .

Definition 2.2. An smooth embedding ε : Sg → R2 × R is regular with respect to π if it
satisfies the following conditions:

(1) the Gauss map of ε(Sg) is transverse to the equator of S2;
(2) the differential d(π ◦ ε|C ) has rank 1 except for a finite collection of points, which

are all corners; and
(3) the immersed, piecewise smooth π ◦ ε(C ) self-intersects only in transverse double

points.

The preceding discussion shows regular embeddings are generic. Unless otherwise stated,
for the remainder of this paper all embeddings will be regular. We consider C ⊂ Sg to be a
collection of smooth s.c.c.’s with marked points corresponding to the corners.

2.2. Folding sign of a crease curve. Since any embedding of an orientable closed surface
into Euclidean 3-space is the boundary of a unique compact 3-submanifold, MS, we have
a well-defined orientation for ε(Sg) coming from the outward pointing normal vector field
with respect to this submanifold. For this natural orientation of ε(Sg), in the neighborhood
Nx ⊂ Sg of a rank-1 point x ∈ C there are two possible embeddings. As illustrated in Fig. 4 ,
either the outward pointing normal vectors are “pointing towards each other” or “away from
each other”. For the former situation we say the crease folds negatively (or “−”) along the
segment. (See left illustration of Fig. 4 .) For the latter situation the crease folds positively
(or “+”) along the segment. (See right illustration of Fig. 4 .)

Figure 4. On the left, a positive fold, and on the right, a negative fold.

Alternatively, we can assume that Nx ⊂ Sg has been chosen small enough neighborhood
of x ∈ Sg so that π ◦ε(C )∩π ◦ε(Nx \C ) = ∅. Let y ∈ π ◦ε(Nx \C ) and π−1(y)∩ε(Nx) =
{x1, x2} ⊂ ε(Nx\C ). Let x1x2 ⊂ R2×R be the compact line segment for which π(x1x2) = y.
Then ε(Nx∩C ) is a negatively folding segment if x1x2∩MS = {x1, x2}. If x1x2∩MS = x1x2

then ε(Nx ∩ C ) is a positively folding segment.
Note that along arcs of rank-1 points of C , the folding direction is constant; it can only

switch at rank-0 points. Any component of C that is without corners is either a positively
folding s.c.c. or a negatively folding s.c.c., and more generally a component passes through
an even number of corners. We denote the collection of all positive arcs and components C +

and similarly all negative arcs and components C −.
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The reader should observe that the folding sign of either a segment in C between two
corners, or a corner-free component of C is an invariant of an embedding’s regular isotopy
class.

2.3. Partial turning numbers and external angles. We start by defining the “partial
turning number” of an oriented smooth arc in R2. Let α : [0, 1] ↪→ R2 be a smooth unit
speed arc and define α′(0) := lims→0+ α′(s) and α′(1) := lims→1− α

′(s). Then α′(s) =
(cos(s(t)), sin(s(t))) for some angle function s(t). Then the partial turning number is

tp(α) :=
s(1)− s(0)

2π
∈ R.

Note that in the case that α is a smooth closed curve—α(0) = α(1) and α′(0) = α′(1)—this
definition agrees with the usual definition of the turning number:

t(α) = tp(α) =
s(1)− s(0)

2π
∈ Z.

We observe that the above definitions are independent of parameterization, and are thus
well defined.

Fix an orientation of R2 ⊂ R2 × R. Let K ⊂ Sg \ C be a connected component. We
consider the closure of K, that is K̄ = K ∪ ∂K where ∂K ⊂ C . (We will be utilizing
this association between K and K̄ throughout this paper and K̄ will always be notation
for a compact connected surface.) The orientation of R2 pulls back under π ◦ ε to give an
orientation of K̄; this extends to an orientation on each curve γ ⊂ ∂K. The reader should
observe that γ is necessarily a boundary component of two distinct components K,K ′ of
Sg \ C , and both will induce the same orientation on γ. Thus we can consider C as a
collection of oriented curves.

Next, we consider the “external angle” of a corner x ∈ γ ⊂ C . Let α, β ⊂ π ◦ ε(γ) be
adjacent smooth arcs to π ◦ ε(x). For all such corners we require the technical assumption
that the angle between α and β at π ◦ ε(x) be π

2
—the angle between their corresponding

endpoint tangent vectors. The reader should observe that this assumption is not limiting
since we can perform an isotopy (and, indeed, a regular isotopy) of ε(Sg) in a neighborhood
of each corner to obtain this technical assumption.

We consider the embedding of the two components of Nx \ C when x is a corner of C .
In Fig. 5 we have an illustration of the two embedded components of ε(Nx \ C ). We are
interested in computing the external angle with respect to K, ∠K(x), at π ◦ε(x), where K is
the subsurface containing a given component of Nx\C . As shown in Fig. 5 , this is the angular
“swing” between the tangent vector coming into π ◦ ε(x) and the tangent vector coming out
of π ◦ε(x). As we have fixed the two arcs meeting at π ◦ε(x) to meet at an angle of π

2
, there

are two possible values for ∠K(x): +π
2
, as in Fig. 5a , and −3π

2
, shown in Fig. 5b . (Here we

are making the positive/negative sign assignments in the classical manner—counterclockwise
is positive, clockwise is negative.)

An alternative approach to determining the external angle at a corner is to take a push-off
of ε(Nx∩C ) into the two pieces of ε(Nx\C ) and compute the partial turning numbers of the
projected arcs. In particular, let αx = Nx∩C be a crease segment with corner x. We consider
the two smooth push-offs, α̂x+1/2 and α̂x−3/2, into the two components of Nx \ αx. In both
illustrations of Fig. 5 , the oriented brown curve depicts such a push-off, with π ◦ε(α̂x+1/2) on
the left and and π ◦ ε(α̂x−3/2) on the right. Then tp(α̂x+1/2) = +1

4
, since the tangent vector of
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external angle

(a) An external angle of π2 .

external angle

(b) An external angle of 3π
2 .

Figure 5. A top-down view of the two layers of ε(Nx) at a corner x. The green
segments depict the portion of Nx that is in C . The blue vectors correspond to the
associated external angles. The dark green arcs correspond to the push-offs of C
into Nx.

π◦e(α̂x+1/2) has a counterclockwise 1
4
-turn; and, the partial turning number is tp(α̂x−3/2) = −3

4

since the tangent vector of π ◦ε(α̂x+3/2) has a clockwise 3
4
-turn. The external angle of x with

respect to a component of Nx ∩ C is then 2π times the associated partial turning number.

2.4. Weighting of the crease set. Let K ⊂ Sg \ C be a connected component. Let
γ ⊂ ∂K be a boundary component with corners {x1, . . . , xn} ⊂ γ connecting smooth subarcs
{α1, . . . , αn} ⊂ γ. Then we define the Gauss-Bonnet weight with respect to K of γ to be

tK(γ) =
∑

1≤i≤n

tp(π ◦ ε(αi)) +
∠K(xi)

2π
.

When γ has no corners, this is the turning number of π ◦ ε(γ). The reader should observe
that Gauss-Bonnet weights are well-defined, independent of our orientation choice for R2.

An equivalent method of defining tK(γ) is to take a smooth push-off of γ into K, γ̂ ⊂ K,
that inherits its orientation from γ; then tK(γ) := t(π ◦ ε(γ̂)). This is effectively applying
the alternative definition of ∠K to each corner along γ simultaneously. In particular, this
shows that tK always takes integral values and, moreover, does not depend on our choice to
fix the corner angles of π ◦ ε(C ) as π

2
.

2.5. The decorated surface. We now consolidate the data that we have developed in
previous sections into a decorated surface, (Sg,C ,T), associated with an embedding, ε :
Sg ↪→ R2 × R. Specifically, T denotes the following function.
Turning number function: T : C ↪→ Z2. Let γ ⊂ C and consider the distinct connected
components K,K ′ ⊂ Sg \C such that γ ⊂ ∂K̄ and γ ⊂ ∂K̄ ′. Then T : γ 7→ (tK(γ), tK′(γ)) ∈
Z2, the Gauss-Bonnet weights of γ with respect to K and K ′. If γ has no corners then
tK = tK′ and we simplify to a 1-tuple.
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3. Realization coming from link complements

Let L : S1t· · ·tS1 ↪→ R2×R be an embedding of a link such that (π◦L)(S1t· · ·tS1) ⊂ R2

is a regular projection of a link L. We now augment this link projection by replacing a small
disk neighborhood of each crossing with a “crossing ball” as shown in Fig. 6a . Let R2

+

(respectively, R2
−) be R2 with each disk neighborhood of a crossing replaced by the upper

(respectively, lower) hemisphere of a crossing ball. Let R3
+ (respectively, R3

−) be upper half-
space (respectively, lower half-space) that has R2

+ (respectively, R2
−) as its boundary plane.

The salient feature of this construction is that there is now an embedding, L̄ : S1t· · ·tS1 ↪→
R2

+ ∪R2
− (⊂ R2 ×R) such that π ◦L = π ◦ L̄. We will use L̄ to denote of the embedding of

the link into R2
+ ∪R2

− for the remainder of this discussion. The reader should observe that
L and L̄ are isotopic to each other in R2 × R.

crossing
ball

L

(a) A crossing ball. (b) A saddle disk, depicted in blue.

Figure 6. How an essential surface lies near a crossing of L.

3.1. Normal form. We consider an essential closed surface, S ⊂ R3\L̄. By general position
arguments we can assume that S ∩ R2

± is a collection of s.c.c.’s and that any nonempty
intersection of S with a crossing ball is a collection of “saddle” disks. (See Fig. 6b .) Moreover,
by requiring S to be an essential surface we can assume that S∩R3

+ and S∩R3
− are collections

of disks. The embedding of S is in normal form with respect to R2
± if the following three

conditions hold:
(1) every s.c.c. of S ∩R2

± intersects at least two distinct crossing balls;
(2) for a crossing ball B and s.c.c. γ ∈ S ∩ R2

±, γ intersects B in at most 2 arcs. If γ
meets some B in two arcs, they are on the boundary of a common saddle disk in B.

(3) S \ (S ∩R2
±) is a collections of open disks in R3

± and saddle disks in crossing balls.
For any disk component ∆γ ⊂ S ∩R3

±, with boundary curve γ ∈ S ∩R2
±, we require

π restricts to a diffeomorphism from ∆γ onto its image, the disk that π(γ) (⊂ R2)
bounds. (The reader should observe that requiring S \ (S ∩R2

±) to be a collection of
disks is natural due to the incompressibility of the essential surface S.)

Using general position arguments that are well known in the literature and a number of
graduate texts (see for example [H-T-T1 , H-T-T2 , Li , M1 , M2 ]), one can establish the fol-
lowing theorem. Thus, due to the repetitive nature of any proof we offer the following result
without argument.

Theorem 3.1. Let L ⊂ R2 × R be a link and L̄, R2
± be the associated spaces as described

above. Let F ⊂ (R2×R) \L be an closed incompressible surface in the link’s exterior. Then
there exists a closed incompressible surface F̄ ⊂ (R2 × R) \ L̄ such that:

(a) F̄ is in normal form with respect to the R2
±;
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(b) χ(F ) = χ(F̄ );
(c) if L is a non-split link then (L, F ) is pairwise isotopic to (L̄, F̄ ) in R2 × R;

We caution that not all surfaces in normal form with respect to a link projection are
incompressible/essential, despite being “captured” by a link projection. For examples, pro-
jections of hard unknots ([G , K-L ]) will have their non-essential peripheral torus in normal
form with respect to their projection.

The salient feature of such a surface in normal form is that the curves of crease set live in
the 3-valent graph, Γ = S∩ (R2

+∪R2
−). This can be seen from condition (3) above. Since for

each open disk ∆ ⊂ S \ Γ we have π|∆ is a diffeomorphism onto an open disk in R2, we can
place a flat structure on the disks of S \ Γ. Thus, the crease set of a surface in normal form
will be exactly the set of edges of Γ where the a flat structure of a disk cannot be extended
across an edge to an adjacent disk of S \ Γ.

The condition for deciding which edges of Γ live in C is straight forward. Let α ⊂
S ∩ (R2

+ ∩R2
−) ⊂ Γ be an arc which will necessarily lie away from crossing balls. Then α

will be adjacent to two disks ∆+ ⊂ S∩R3
+ and ∆− ⊂ S∩R3

−. If π(int ∆+)∩π(int ∆−) 6= ∅
near α then α is in the crease set of S. (Here, int ∆± is the interior of the disks.) Similarly,
consider an arc α ⊂ S ∩ ∂B, where B is a crossing ball. Then α is adjacent to a disk
∆ ⊂ S ∩ (R3

+ ∪R3
−) and a saddle disk ∆B ⊂ B. If π(int ∆) ∩ π(int ∆B) 6= ∅ near α, then

α is in the crease set of S.

3.2. Proof of Theorem 1.5 . Since ε(Sg) ⊂ R2 × R is an orientable surface, we choose an
orientation and we let N be the associate oriented normal bundle.

Next, for each component, γ ∈ C , we take the two smooth normal push-offs, γ+ in the
N -direction and γ− in the −N -direction. After a small isotopy that places these push-offs
in position so that we obtain a regular link projection under π, it is readily confirmed that
ε(Sg) is in normal form with respect to L and π ◦ ε(C ) ⊂ π(Γ) = ε(Sg) ∩ (R2

+ ∪R2
−).

Once a single link projection π(L) is obtained such that π ◦ ε(C ) ⊂ Γ, an infinite family
of links is obtained by letting strands that intersect a common region of (R2

+ ∪R2
−) \ Γ of

the link entangle each other. (See the tangle T in Fig. 3 .)

4. Gauss-Bonnet equations

In this section we will show how the classical Gauss-Bonnet Theorem from differential
geometry governs the behavior of the turning number function of a decorated surface.

Specifically, let (F, g) be a compact oriented Riemannian surface with boundary. (For
a development of this topic please see [L ].) We let K denote Gaussian curvature and kg
denote geodesic curvature. We will be considering the case where the components of ∂F are
piecewise smooth, so we let {v1, . . . , vm} ⊂ ∂F be the collection of boundary vertices. We
denote the external angle at a vertex by θ(vi), 1 ≤ i ≤ m. Then the Gauss-Bonnet Theorem
states:

(4.1)
∫
F

K dA+

∫
∂F

kg ds+
∑
vi∈∂F

θ(vi) = 2π · χ(F ).

For a regular embedding ε : Sg ↪→ R2 × R, we recall the discussion of the subsurface
K̄ ⊂ Sg from §2.4 . We now adapt Equ. 4.1 to our study of regular embeddings of surfaces
into R2 × R.
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Proposition 4.1. Given a regular embedding ε : Sg ↪→ R2 ×R and an associated connected
subsurface, K ⊂ Sg \ C , for the restricted regular embedding ε : K̄ ↪→ R2 × R, we have

(4.2)
∑
γ∈∂K̄

tK(γ) = χ(K̄).

Proof. We start by giving K̄ the Riemannian metric that corresponds to pulling back the
flat Riemannian metric of R2 to K̄ by the map (π ◦ ε)−1. Then the Gaussian curvature on
K̄ is K ≡ 0. Moreover, for any smooth arc, α ⊂ ∂K̄, the geodesic curvature, kg(x), x ∈ α,
corresponds to the signed curvature, ks(π◦ε(x)). That is, for the smooth arc π◦ε(α) (⊂ R2),
the signed curvature ks|π◦ε(x) is equal to the classical Frenet-Serret curvature times ±1—it
is +1 if the Frenet-Serret normal vector equals the inward pointing normal to π ◦ ε(K̄) at
π ◦ ε(x), and −1 otherwise.

With this convention it is a result of classical differential geometry that∫
α

kgds =

∫
π◦ε(α)

ksds = 2π · tp(π ◦ ε(α)).

A curve γ ∈ ∂K̄ is piecewise smooth with this metric. It fails to be smooth at the corners
of γ, and at such a corner x, the external angle is θ(π ◦ ε(x)) = ∠K(x). It follows for a
boundary curve with corners, γ ⊂ ∂K̄, with smooth arcs {αi}i∈I and corners {xi}i∈I ,∫

γ

kg ds+
∑
i∈I

θ(xi) =
∑
i∈I

[∫
π◦ε(αi)

ksds+ θ(π ◦ ε(xi))
]

=
∑
i∈I

[2π · tp(π ◦ ε(αi)) + ∠K(xi)]

= 2π
∑
i∈I

[
tp(π ◦ ε(αi)) +

∠K(xi)

2π

]
= 2π · tK(γ).

(4.3)

Then setting K ≡ 0, it follows from Equ. 4.1 that∫
∂K̄

kg ds+
∑
i∈I

θ(xi) = 2π
∑
γ∈∂K̄

tK(γ)

= 2π · χ(K̄).

(4.4)

The equality of our proposition then follows. �

Remark 4.2. Following the alternative method of computing tK(γ) described in §2.4 , can
restate Equ. 4.2 as

(4.5)
∑
γ∈∂K̄

t(π ◦ ε(γ̂)) = χ(K̄).

We are now situated to establish Equ. 1.1 mentioned in §1 .

Theorem 4.3. Let ε : Sg ↪→ R2 × R be a regular embedding with crease set C . Let
{K1, . . . , Kl} ⊂ Sg be the collection of all the connected subsurface components of Sg \ C .
Then
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(4.6)
∑

1≤i≤l

∑
γ∈∂K̄i

tKi
(γ) = χ(Sg).

Moreover, when every component of C is without corners then Equ. 4.6 implies the following
equality.

(4.7) 2
∑
γ∈C

t(γ) = χ(Sg).

In particular, when g = 0 and C has no corners, twice the sum of all the turning numbers
of s.c.c.’s of C is equal to 2.

Proof. From classical topology it is a well known fact that the Euler characteristic is additive
in the following sense. Let F1 and F2 be two orientable compact surfaces with boundary.
Let A ⊂ ∂F1 and B ⊂ ∂F2 be two collections of boundary components such that |A| = |B|.
For any homeomorphism, f : A ↪→ B, consider the surface, F1 ∪f F2, obtained by gluing F1

to F2 via f . Then χ(F1 ∪f F2) = χ(F1) + χ(F2).
Applying this fact to Sg, we have the following sequence of equalities:

χ(Sg) = χ(K̄1) + · · ·+ χ(K̄l)

=
∑
γ∈∂K̄1

tK1(γ) + · · ·+
∑
γ∈∂K̄l

tKl
(γ)

=
∑

1≤i≤l

∑
γ∈∂K̄i

tKi
(γ) = χ(Sg).

(4.8)

Our first equality then follows.
The claimed equality for the situation where there are no corners follows from the obser-

vation that each γ ∈ C is a boundary curve of two Ki’s, and γ has the same Gauss-Bonnet
weight for each. �

We include the special case of the sphere in our statement since we will be restricting to
that case alone for the remainder of the paper.

4.1. Proof of Theorem 1.1 . The claim of the theorem can be restated as follows. Given a
pair (S2,C ) that can be geometrically realized by some regular embedding, there is a unique
turning number function T : C ↪→ Z2, that is, T is independent of embedding.

We have three key observations that will be combined to establish this result. The first
observation is that every s.c.c. on S2 is a separating curve.

The second observation follows from the first, we can determine one of the Gauss-Bonnet
weights of a component, γ ∈ C , that is innermost on S2. That is, there will always exist a
connected subsurface component with boundary, K̄ ⊂ S2, that is homeomorphic to a 2-disk.
With γ = ∂K̄ we will have

+1 = χ(K̄) = tK(γ),

and thus one of γ′s Gauss-Bonnet weights.
The third observation is that if we can determine one of the two Gauss-Bonnet weights

for a s.c.c., γ ∈ C , then we can determine the other. To see this, let K̄, K̄ ′ be two connected
subsurface components with boundary that share a common boundary curve. That is, we
have a curve with corners K̄ ∩ K̄ ′ = γ ∈ C . We observe that if we know the value of tK ,
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we can determine the value of tK′ , since a π
2
corner in K̄ (respectively, 3π

2
corner) becomes

a 3π
2

corner (respectively, π
2
corner) in K̄ ′, while the partial turning numbers of smooth arcs

remain the same.
Now combining these three observations, suppose there is a component of C for which

T is undetermined. Again, let {K̄1, . . . , K̄l} be the collection of all connected subsurface
components coming from S2 \ C . Suppose there is a subsurface, K̄i, such that tKi

is un-
determined for one of its boundary components. If such a component exists then we can
choose K̄i such that it has only one boundary component with tKi

undetermined. But, using
Equ. 4.2 , we can solve for the “undetermined” Gauss-Bonnet weight associated to K̄i—we
will know χ(K̄i) and all but one of the associated Gauss-Bonnet weights.

The theorem then follows.

4.2. Proof of Theorem 1.2 . Once the number of components and corners of C is bounded
by nt and nc, respectively, the finiteness claim follows from topological bookkeeping argu-
ments.

First, given a collection of disjoint s.c.c.’s, C ⊂ S2, we can naturally associate to it a
graph. Each vertex of the graph will correspond to a connected component of S2 \ C and
the edges of the graph will correspond to the components of C—two vertices associated to
two subsurface components of S2 \ C share a common edge if the curve of C associated to
that edge is a common boundary curve of the two subsurfaces. Since every s.c.c. in S2 is
separating the graph associated with a pair (S2,C ) will be a tree. It is well known that the
number of distinct tree-like graphs having at most nt edges is a bounded set. (See [C ].)

To take into account corners of C , note that given a collection of disjoint s.c.c.’s, C ⊂ S2,
there is only a finite number of ways to distribute no more than nc marked points along the
curves of C .

5. Constructing embeddings of S2

In this section we revisit question (2) of §1 : given a collection of s.c.c.’s C ⊂ S2, when is
C realized as the crease set of a regular embedding into R2×R? We will answer this question
in the simplified case where the crease set has no corners. From Theorem 1.1 we know that
if such an embedding exists, the turning number function, T, decorating the pair (S2,C ) is
uniquely determined. Since such a T is totally determined by the topological information of
the components of S2 \ C , one can readily decide whether such a function exists.

Specifically, let (S2,C ,T) be a triple satisfying the following (∗) conditions:
(∗-i) C ⊂ S2 is a collection of pairwise disjoint smooth s.c.c.’s.
(∗-ii) T : C ↪→ Z such that for each connected surface K ⊂ S2 \ C , the associated surface

with boundary, K̄, satisfies the relationship∑
γ∈∂K̄

T(γ) = χ(K̄).

With the above statement of (∗) in mind, we now give an equivalent restatement of Theo-
rem 1.3 , which we will proceed to prove in the remainder of §5 .

Theorem 5.1. Let (S2,C ,T) be a triple satisfying (∗). Then there exists a regular embed-
ding, ε : S2 ↪→ R2 ×R, such that C corresponds to the crease set of ε and T corresponds to
the turning number function associated with ε. In particular, the crease set has no corners.
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Our constructive argument has two steps. First, we develop an understanding of represent-
ing embeddings of flat planar surfaces in R2×R. Second, we show how these representations
can be “stacked” together to construct the needed embedding of S2.

5.1. Constructing planar surfaces K̄. We start with the following definition.

Definition 5.2. An n-turning weight,W , is an (n+1)-tuple of odd integers,Ws = (t0, . . . , tn),
such that

n∑
i=0

ti = 1− n.

The standard n-turning weight set is
Ws = (1,−1,−1, . . . ,−1︸ ︷︷ ︸

n

).

A basis for an n-turning weight, W = {t0, . . . , tn}, is a collection of integers, {k0, . . . , kn},
such that:

1. t0 = 1 + 2k0,
2. ti = −1 + 2ki, for 1 ≤ i ≤ n.
3. Necessarily,

n∑
i=0

ki = 0.

Let K̄1−n be a smooth compact planar surface having Euler characteristic equal to 1− n.
Let W = (t0, . . . , tn) be an n-turning weight. We say an embedding ε : K̄1−n ↪→ R2 ×R is a
geometric realization of W if:

i. every point of int K̄1−n is a regular point. Thus, the pull-back of π ◦ ε(K̄1−n) gives
a flat structure to K̄1−n.

ii. There is an enumeration of the boundary components, ∂K̄1−n = {γ0, γ1, . . . , γn},
such that we have t(γi) = ti for 0 ≤ i ≤ n. That is, the turning numbers of the
components of ∂K̄1−n realize W .

Consider a closed disk in R2×{pt.}. Delete from it n open subdisks with disjoint closures.
The resulting “disk with n holes” will be an embedding of a K̄1−n that is a geometric realiza-
tion of the standard n-turning weight, Ws. We will use the notation εs : K̄1−n ↪→ R2×{pt.}
for this standard embedding of a planar surface of Euler characteristic 1 − n. Observe that
we can easily require that the Frenet-Serret curvature be nowhere zero on ∂εs(K̄1−n).

We now give a procedure for taking the standard embedding, εs(K̄1−n), and altering it so
that we obtain a geometric realization of any chosen n-turning weight, W . Let {γ0, . . . , γn}
be a fixed enumerated labeling of the boundary components ∂K̄. Let {ko, . . . , kn} be a basis
for W . For each boundary component, γi, we chose |ki| distinct points, p1

i , . . . , p
|ki|
i ⊂ γi,

and label them “+2” (respectively, “−2”) when ki > 0 (respectively, when ki < 0). (To keep
down the clutter in our figures, we will use a dot, •, for +2 label and a circle, ◦, for −2
label.) Note that all the labels on a particular boundary component are the same. See the
initial illustration in the sequence in Fig. 7 .

Next we choose a collection of properly embedded pairwise disjoint arcs, {aj} ⊂ K̄1−n
such that each arc has one endpoint labeled −2 and the other endpoint labeled +2. Thus,
each arc has a natural orientation from its negative to positive boundary endpoints. We will
refer to such properly embedded oriented arcs as twisting arcs of K̄ associated with W .
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Three observations are warranted. First, we must have

l =
1

2

n∑
i=0

|ki|

many arcs. Second, since the labels on a particular boundary component are homogeneous,
the two endpoints of any twisting arc are on different boundary components. Finally, there
is a great deal of choice in the embedding of the twisting arcs. Although it is not necessary,
for convenience of description we will assume that these arcs are linear intervals. See the
starting illustration in the sequence of Fig. 7 .

Figure 7. The top sequence illustrates how the twisting operation in a neighbor-
hood of the two oriented arcs takes a planar surface that realizes the standard 2-
turning weight set, (1,−1,−1), to a realization of the 2-turning weight set, (−3, 1, 1).
This top sequence continues with an isotopy of the resultant boundary so that ks 6= 0
at every point on the red boundary curves. The bottom sequence illustrates our
twisting operation in a neighborhood of an oriented arc.

Next, given a choice of of twisting arcs, {aj}1≤j≤l ⊂ K̄, in a standard embedded planar
surface we can perform the twisting operation illustrated in Fig. 7 in a neighborhood of each
aj. The resulting planar surface embedding will be a geometric realization of the associated
n-turning weight set, W . The top sequence in Fig. 7 illustrates this procedure for the taking
the standard embedding of a disk-minus-two-holes and obtaining an embedding associated
with the 2-weight set, (−3, 1, 1).

The reader should observe that the basis used for the (−3, 1, 1) geometric realization
is (k0, k1, k2) = (−4, 1, 1). However, one could also utilize the basis (k0, k1, k2) = (0,−1, 1).
Utilizing this “change of basis” one will have a single properly embedded arc whose endpoints
are on the two −1 boundaries of starting planar surface in the top-sequence of Fig. 7 . The
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2-turning weight then becomes (1,−3, 1) or (1, 1,−3), depending on the ordering of the
boundary curves.

The above discussion is captured by the following proposition.

Proposition 5.3. For any basis, {k0, . . . , kn}, associated with a n-turning weight set, W ,
there exists an embedding, ε : K̄1−n ↪→ R2 × R, that is a geometric realization of W in a
manner that respects the basis. That is, the turning number of the γi boundary curve of K̄1−n
is 1 + 2k0 when i = 0 and −1 + 2ki when 1 ≤ i ≤ n.

A number of remarks follow.

Remark 5.4. The reader should observe that the only possible way a boundary curve having
+1 turning number can result from our twisting operation is if the associated basis value is
either k0 = 0 or ki = 1, 1 ≤ i ≤ n.

Remark 5.5. As illustrated in the initial planar surface of the top sequence of Fig. 7 , we can
readily assume that the geometric realization of a standard n-turning weighted set has its
boundary curves in a “normal position”. That is, the curvature ks is not zero at any point on
the boundary. The reader should observe that the twisting operation preserves this normal
position—ks 6= 0—on the γ0 boundary curve when the associated basis value k0 ≥ 0.

Remark 5.6. Continuing an analysis of the behavior of the boundary curvature with respect
to the twisting operation, for 2 ≤ j ≤ n, if we have a basis value, kj ≤ 0, then ks 6= 0 on the
associated boundary curve after performing the twisting operation.

Figure 8. A depiction of the isotopy on a boundary curve of a planar component
so it will be in normal form once the twist operations are performed. The isotopy
fixes a neighborhood of the green oriented arcs where the twists will be done. In this
case, the inner curve has kj = −3, but this generalizes to any kj ≤ −2.

Remark 5.7. For some 1 ≤ j ≤ n, if we have a basis value kj ≤ −2 then we can perform an
isotopy that achieves ks 6= 0 on the associated boundary curve after the twisting operation
is applied. (See Fig. 8 .)

Remark 5.8. To deal with final case for achieving a normal form for the resulting embedding
of K̄, Fig. 9 illustrates how the boundary curve initially having −1 turning number can
achieve a +1 turning number after a single twist operation. This is the case where kj = −1
for some 1 ≤ j ≤ n. The embedding depicted in the middle illustration of the sequence has
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Figure 9. The twist operation performed with a kj = −1 curve, followed by an
isotopy sliding the top portion of K̄ to the left, so that that ks 6= 0 along the twisted
blue boundary curve.

this +1 turning number boundary curve not in normal form since there will be two points
where ks = 0. The right-hand illustration shows this same boundary curve after an isotopy
that places it in a position where ks > 0.

5.2. Constructing embeddings and proof of Theorem 1.3 .

5.2.1. Labeled tree graphs. We assume that we are given, (S2,C ), a 2-sphere/crease set pair.
That is, C ⊂ S2 is a collection of pairwise disjoint smooth s.c.c.’s which have a Gauss-Bonnet
weighting. We can associate to this pair a labeled tree graph (LTG), G , as follows:

1. For each connected planar component, K ⊂ S2 \ C , there is a corresponding vertex
vK ⊂ G , with label χ(K̄).

2. Each edge, eγ ⊂ G , corresponds to a curve of γ ∈ C with the label t(γ).
3. An edge, eγ ⊂ G , is incident to vertices, vK , vK′ ⊂ G , if γ = ∂K ∩ ∂K ′.

A LTG being a tree comes from the fact that all s.c.c.’s on a 2-sphere separate.

Example 5.9 (Part 1.). We offer a running example, (S2,C ) = (S2, {γ1, . . . , γ13}), with:
t(γi) = 1, i ∈ {1, 2, 3, 4, 10, 11, 12, 13}; t(γ5) = t(γ6) = t(γ8) = t(γ9) = −3; and t(γ7) = +5.
Fig. 10 illustrates C ⊂ S2 and Fig. 11 depicts the associated LTG, G .

γ1 γ2 γ3 γ4

γ5 γ6

γ7

γ8 γ9

γ10 γ11 γ12 γ13

+1 +1 +1 +1

+1 +1 +1 +1

−3 −3

−3 −3
+5

Figure 10. A collection of curves on S2 corresponding to C . Each curve in C is
labeled γi for 1 ≤ i ≤ 13. Additionally, each curve is labeled with its determined
Gauss-Bonnet turning number weight.
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+1 +1 +1 +1

+1
+1

−1 −1

+1 +1

+1 +1

+1
+1

γ3

−1 −1

−3 −3 γ5

−1 −1

+5

−1 −1

−3

−3

γ8

−1 −1

+1

+1

γ12

+1 +1

+1 +1

−1 −1
+1

+1

+1 +1 +1 +11

2

3

4

5

6

7

8

9

10

11

12

Figure 11. The graph G associated with Example 5.9 . Labels in the vertices (cir-
cles) correspond to Euler characteristic of planar subsurface. Labels of edges corre-
spond to the turning number of the adjoining curve of C . The height axis between
the two graph depictions gives the height/order for the stacking procedure that is
illustrated in Fig. 14 .

For a given (S2,C ) configuration we can embed its associated LTG, G ↪→ R×R ⊂ R2×R.
We use the coordinates ((x, y), z) ∈ R2×R and ((x, y0), z) ∈ R×R, where y0 is an arbitrary,
fixed value. We denote the z-height of a vertex v ⊂ G by zv ∈ R, and the z-interval support
of any edge eγ ⊂ G , corresponding to γ ∈ C , by Iγ ⊂ R. As a tree, any LTG can be
embedded in R× R so as to satisfy the following (?) conditions:
(?)-0 For two distinct vertices, v, v′ ⊂ G , we have zv 6= zv′ .
(?)-1 Each edge is a straight line segment with slope being non-zero, i.e.

∣∣dx
dz

∣∣ > 0.
(?)-2 Each vertex, v ∈ G , having adjacent edges, {eγ1 , . . . , eγp} for γi ∈ C , 1 ≤ i ≤ p,

satisfies one of the following statements: (a) min Iγi ≥ zv iff t(γi) > 0; or, (b)
max Iγi ≤ zv iff t(γi) > 0. (See Fig. 12 .)

Regarding condition (?)-2, the reader should observe that if v, v′ ⊂ G are two vertices
adjacent to a common edge then one vertex satisfies (?)-2a and the other satisfies (?)-2b.
Overall, it is a elementary inductive argument on the number of vertices that any LTG has
an planar embedding satisfying condition (?). The reader can check that the LTG associated
with our running example in (Fig. 11 ) satisfies (?).

5.2.2. Consistent labeling of a LTG. As in the embedding construction establish in Proposi-
tion 5.3 , we will initially need to designate a collection of twisting arcs in each K̄, χ(K̄) ≤ 0,
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+
+ +

+

− − − −

v v

− − − −

+
+ +

+

Figure 12. The two possible height configuration of edges at a vertex. The left
(respectively, right) corresponds to (?)-2a (respectively, (?)-2b).

that is associated with a given (S2,C ) that has a Gauss-Bonnet weighting. Such a desig-
nation of arcs is non-unique. As with the case of an individual compact connected planar
surface, deciding the placement of twisting arcs in S2 starts with deciding which curves of C
will correspond to the +1 turning number of a standard n-turning weight set. Specifically,
for a (S2,C ) configuration, let C = {γ1, . . . , γm} ⊂ C be a subset collection such that for
any K̄, χ(K̄) ≤ 0, associated with the configuration, exactly one curve of C lies in K̄. For a
subcollection C satisfying this condition we say C is a consistent labeling of C . Reframing
this in terms of the LTG, a subcollection of edges, E(C) ⊂ G , is a consistent labeling if each
vertex of G that has a non-positive label is adjacent to exactly one edge in E(C).

In our running example, the subcollection of C with a � corresponds to a consistent
labeling of C . See Fig. 13 . Similarly, the corresponding edges of the LTG in our running
example have a �. See Fig. 11 .

The salient feature of such a labeling is that if γ ∈ C is a crease curve that is a boundary
curve of the two planar components, K,K ′, then the ±2-labeling on γ when viewed as a
boundary curve of K is the same as the ±2-labeling on γ when viewed as a boundary curve
of K ′.

γ1 γ2 γ3 γ4

γ5 γ6

γ7

γ8 γ9

γ10 γ11 γ12 γ13

+1 +1 +1 +1

+1 +1 +1 +1

−3 −3

−3 −3

+5

Figure 13. The crease set, C ⊂ S2, of the running example with the enhancements
of black-squares and green edge-paths of oriented arcs.

That label consistency is readily achievable follows from the black-square tree decomposi-
tion procedure that we now describe. Let v ∈ G be a vertex that is adjacent to a collection
of edges, all but one of which carrying a “+1” label. Note that the exceptional edge will have
a negative integer as its label. We make an initial choice of edge for placing a black-square,
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�: either a “+1” edge receives the square or the exceptional edge receives it. Next, we
choose an “alternating” edge-path, E(v, v′) ⊂ G , between v and another v′ ∈ G that is also
only adjacent to a collection of “+1” labeled edges and a single negative labeled edge. The
edge-path is alternating in the sense that, referring to Fig. 12 , each interior vertex of the
edge-path is adjacent to one positive and one negative edge of E(v, v′).

Now, if E(v, v′) does not include our initial choice of the black-square edge, e, we extend
it to include e. An extension would mean that the edge-path now goes between a +1 labeled
vertex and v′, and we relabel this +1 vertex as our v. If our initial choice of a black-square
edge is the exceptional negative labeled edge then there is nothing to do.

With this possible extension modification in place, we now traverse E(v, v′) starting at v
and traveling across the first edge which will have a black-square. We then place a on every
other edge in the edge-path E(v, v′). When we finally come to the ending vertex v′, if it
black-square is not adjacent to an edge with a black-square then we add an extending edge
that is adjacent to a +1 vertex and label this extending edge with a black-square. If this
final extension is necessary, we again adjust the labeling of vertices so that v′ is now a +1
labeled vertex.

Now let e1, . . . , ek ⊂ G be the collection of edges that are adjacent to E(v, v′), and T1 ⊂
G \ (E(v, v′)∪

⋃
i ei) is a collection of trees—here E(v, v′)∪

⋃
i ei is the link of E(v, v′). Any

component of T1 that is a single vertex will necessarily have a +1 label. For any component
of T1 that is not a single vertex we repeat the above procedure of choosing a black-square
edge-path with the following proviso.

Observe that each vertex of T1 inherits the positive/negative edge feature of Fig. 12 . In
our choice for v and v′ we allow for the possibility that an edge path can end or begin at
a vertex that has only negative/positive edge labels adjacent to it. With this in mind, we
iterate the choice of a black-square edge-path in each component of T1. Then T2 is obtained
by removing the link of each black-square edge-path in each component of T1. We iterate this
removal of the link of black-square edge-paths until what remains is a collection of vertices.
We now reassemble G to obtain a consisting labeling of G .

Once we have a consistent labeling of C (⊂ S2) by black-squares we can label its curves
with +2 green-dots and −2 green-circles. Specifically, for a curve γ ∈ C with a black-
square having Gauss-Bonnet weight wγ, if wγ < 0 we place k◦ green-circles along γ such
that wγ = −1 + −2 · k◦. Whereas if wγ < 0, we place k◦ green-dots along γ such that
wγ = 1 + 2 · k•. Finally, in each K̄ component having both green-dots and green-circles we
make a choice of disjoint twisting arcs connecting the dots to circles.

The reader should observe that the twisting arcs in S2 define a collection of edge-paths in
G , and each edge-path has its endpoints on s.c.c.’s in C that have Gauss-Bonnet weight +1.
We return to our running example.

Example 5.10 (Part 2). Applying the above described procedure to the graph in Fig. 12 ,
we can choose black-square designations for the subcollection, {γ3, γ5, γ8, γ12}, which is a
consistent labeling of C . Here the initial E-edge-path could be the one that goes from γ5 to
γ8. Once the link of this edge-path is removed from the graph, we make �-labeling choices
of γ3 and γ12. We then transfer this labeling to the configuration in Fig. 13 . Now referring
to Fig. 13 , to achieve a +1 Gauss-Bonnet weighting on curves γ1, γ2, γ4, γ10, γ11, γ12, we place
a single +2 green-circle on each. There is no need for additional labeling of γ3 and γ12 since
their �-label implies their Gauss-Bonnet weights are already +1. To achieve a −3 Gauss-
Bonnet weight on γ5 and γ8 we label each of them with two −2 green-circles. Whereas, we
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need only label γ6 and γ9 with a single −2 green-circle. Finally, to achieve the +5 Gauss-
Bonnet weight on γ7 we must label it with three +2 green-dots. Now connecting green-circle
to green-dots in each planar component, we obtain three edge-paths.

γ1 γ2

γ3

γ4

γ5

γ5
γ6

γ6

γ7

γ7

γ8

γ8

γ9

γ9

γ10 γ11

γ12

γ13

Figure 14. A stacking of the planar surfaces from the running example which is
consistent with the height/order of the associated vertices in Fig. 11 .

5.2.3. The height of vertices of a LTG. For a LTG embedding, G ↪→ R × R, satisfying
conditions (?), there is still some ambiguity in establishing the heights of the vertices of
G . To address this issue we utilize our black-square tree decomposition to make the height
assignments of the vertices of G .

We first remark that a black-square decomposition results in having each edge of G being
in either a black-square edge-path of the decomposition or adjacent to two such edge-paths
in the decomposition.

With that observation in mind, we consider the initial black-square edge-path E(v, v′)
of a decomposition. We can readily assign heights to its vertices that correspond to the
order in which one encounters them as one traverses the path starting at v and ending at
v′. This is due to the condition that the edge-path is alternating—height 0, height 1, and
so on. Next, let eγ ∈ G and E′ ⊂ G be an edge and black-square edge-path coming from
the decomposition with E(v, v′) ∩ E′ = ∅ such that eγ is adjacent to both E(v, v′) and E′.
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Let v̄, eγ̄ ∈ E(v, v′) be a vertex and an edge that satisfy the following: v̄ is adjacent to both
eγ and eγ̄, and, eγ and eγ̄ have the same ± label. We then place the height assignment for
the vertices of E′ within the z-interval support, Iγ. Within Iγ we again assign heights to the
vertices in E′ that correspond to the order in which they are encountered as E is traversed.

In general, for two black-square edge-paths, E1 and E2—their indices corresponding to the
order in which they are chosen in the decomposition—and eγ̄ being the commonly adjacent
edge, we will place the height assignments of the vertices of E2 within the z-interval support
of the edge of E1 that shares a vertex with eγ̄ and has the same ± label.

5.2.4. Stacking planar surfaces. We now utilize the embedding of the graph, G , in R×R to
guide a “stacking” of components of S2 \ C in R2 × R. The setup is that we again have a
configuration, (S2,C ), that has a Gauss-Bonnet weighting, and an associated embedding of
its LTG, G ↪→ R×R (⊂ R2×R), that satisfies conditions (?). Let C ⊂ C be a subcollection
that corresponds to a consistent labeling of C . Let K̄ be a compact connected planar surface
coming from a connected component of S2 \ C with χ(K̄) ≤ 0. Finally, let vK ⊂ G be the
vertex associated with K̄.

With the above setup we take εs : K̄ ↪→ R2×{zvK} to be a standard embedding such that
for the curve, γ = C ∩ ∂K̄, we have t(εs(γ)) = +1. We have such a standard embedding for
each planar component where χ(K̄) ≤ 0. By condition (?)-0 we know each plane R2×{pt.}
contains at most one planar surface.

Now suppose two distinct vertices, vK , vK′ ∈ G , are adjacent to an edge e ∈ G . By the
definition of G , this implies K̄ and K̄ ′ share a common boundary curve, γe ∈ C . We use εs
(respectively, ε′s) as notation for the standard embedding associated with K̄ (respectively,
K̄ ′). We now require that the K̄-planar components associated with (S2,C ) satisfy the
following positioning conditions.
P1—For two planar components sharing some γe as a common boundary curve, we position
two surfaces in their respective R×{pt.} planes so that π ◦εs(γe) = π ◦ε′s(γe). Additionally,
we position εs(γe) and ε′s(γe) so that they are bijections on the set of green-circle/dots in γe.
P2—For two planar components sharing some γe as a common boundary curve, let p ⊂
γe(= ∂K̄ ∩ ∂K̄ ′) be a point that is either a green-circle or green-dot. Let a ⊂ K̄ and
a′ ⊂ K̄ ′ be two twisting arcs adjacent to p. We further position εs(γe) and ε′s(γe) so that
π ◦ εs(a) = π ◦ ε′s(a′).

We claim that conditions P1 and P2 can be achieved simultaneously for all K̄-planar
components in their respective copies of R2 × {pt.}. Indeed, if we allow our stacking of
planar surfaces to mirror the black-square tree decomposition of G , these two conditions are
naturally met. That is, first stack only the K̄ ′s that correspond to vertices in the initial
black-square edge-path E(v, v′). For such a “linear” stacking of planar surfaces P1 and P2
are easily achieved. For the next edge-path, E′, within the z-interval support of Iγ, since it
is also a linear stacking, again P1 and P2 are easily achieved. Iterating this mirroring of the
decomposition, we obtain a stacking of planar surfaces satisfying P1 and P2.

Example 5.11 (Part 3). Returning to our running example, in Fig. 14 we show a stacking of
K̄, χ(K̄) ≤ 0, components such that conditions P1 and P2 are satisfied. In particular, the
double-headed arrows indicate how the projected image of the boundary curves along with
the twisting arcs will coincide under the π projection map.

5.2.5. Gluing stacked curves. With the K̄ components (χ(K̄) ≤ 0) associated with (S2,C )
initially embedded in R2 × R as describe in §5.2.4 , we next glue together the two copies of
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π

R2

Figure 15. A gluing of two stacked planar components along a shared boundary
curve. Note that this creates the stacking of green oriented arcs whose projection
into the R2-plane is a single oriented arc.

each embedded curve of C . In particular, for any s.c.c. γ ∈ C with Gauss-Bonnet weight
t(γ) 6= +1, there will be two planar components, K̄ and K̄ ′ for which γ = K̄ ∩ K̄ ′. As a
result of our positioning conditions, P1 and P2, we can perform an isotopy in R2× [zvK̄ , zvK̄′ ]
that glues εs(γ) and ε′s(γ) together. See Fig. 15 .

π

Figure 16. The stack of oriented arcs projects onto a single oriented arc in the R2-plane.

5.2.6. Twisting the stacked planar surfaces. Once a gluing of all (εs(γ), ε′s(γ)) pairs of curves
have been performed, we observe that condition (?)-2 implies that there is an accordion-like-
folding neighborhood of each edge-path of twisting arcs. See Fig. 16 . Finally, we can perform
our twisting operation to this entire edge-path neighborhood as depicted in Fig. 17 . After
performing these twisting operations the image of each s.c.c. of C will realize its assigned
Gauss-Bonnet weighting. In particular, all curves having +1 turning number can now be
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Figure 17. Performing a twist on the stacked arcs.

placed in normal position—nowhere zero curvature—as depicted in Fig. 9 and then capped
off with a disk. The interior of such disks will have empty intersection with the crease set.

6. Embeddings and branched surfaces

The main thrust of this section is to develop the machinery needed for the classification of
isotopy classes for regular embeddings of S2 into R2 × R having a crease set of three curves
without corners. Once our machinery has been developed we will carry out the classification
calculation in §7 .

We start by formalize our meaning of isotopy class with the following definition.

Definition 6.1. An isotopy εt : S → R2×R, 0 ≤ t ≤ 1, is regular if the critical set of π ◦ εt
is C for all t ∈ [0, 1].

Such an isotopy restricts to each subsurface K̄ as defined in §2.3 . Note that a regular
isotopy preserves the local data of the embedding, in that it cannot add or remove corners,
nor change the sign of a crease curve, as defined in §2.2 . However, a regular isotopy may
pass through non-regular embeddings, as the assumption of transverse self-intersections of
π ◦ ε(C ) may be violated.

6.1. The natural branched surface. There is a natural branched surface with boundary,
B ⊂ R2×R, associated with any regular embedding, ε : Sg → R2×R. This is due to the fact
that the projection, π : R2 ×R ↪→ R2, induces an I-bundle fibration on MS, the 3-manifold
bound by ε(S), where the fibers are the components of π−1(p) ∩MS, for any p ∈ R2. B is
then the quotient space, MS/{I − fibers}. We will use qε : ε(S)→ B (⊂ R2 × R) to denote
the image of S under this quotient map.

Taking a brief aside for readers who are not familiar with branched surfaces, our B will
be a smooth surface with a codimension-1 branching locus singular set. Fig. 18 depicts the
three neighborhood models for an interior point in B. The boundary of B is a compact 1-
submanifold which may contain endpoints of the of the branching locus. For our discussion
on the classification of embeddings of 2-sphere with three crease components, the branching
locus and boundary of B will be disjoint. The key point for our discussion is that at every
interior point, p ∈ B\∂B, there is a well defined tangent plane TpB for which the differential,
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(a) Away from branching. (b) A branching point. (c) A double point of branching.

Figure 18. Neighborhoods of different points of B.

dπ : TpB → R2 (⊂ R2 × R), will be an isomorphism. This interior tangent bundle smoothly
extends to a tangent bundle of the boundary for which dπ is again an isomorphism.

Although it is possible to connect our discussion of B with the historical development
of branched surfaces in the literature—specifying the horizontal and vertical boundary of
the I-bundle structure of MS and their interplay with C—it is more straight forward to
develop B from our current machinery. To that end let, C = C +∪C −, be the decomposition
of the crease set into its the positive folding and negative folding components. Coming
from the alternative way of defining the folding direction, we observe that there is a natural
embedding and identification, C + ←→ ∂B (⊂ B), coming from the fact that a point, p0 ⊂ ∂B,
corresponds to a point component of π−1(p) ∩MS for some p ∈ R2. Thus, we will abuse
notion by having C + = ∂B.

Similarly, let L denote the branching locus of B. We now observe that there is a natural
immersion, C − ↪→ L (⊂ B). This comes from the fact that a point, p ∈ L , corresponds to
a fiber component, I ⊂ π−1(π(p))∩MS, for which int I ∩ ε(C −) 6= ∅. (Here the int I is the
interior of the fiber.) Since π ◦ ε(C ) is a 4-valent graph, int I ∩ ε(C −) is either one or two
points. If it is just one point then p lies in a neighborhood modeled on Fig. 18b . If there
are two points then the neighborhood model corresponds to Fig. 18c , a double point in L .
Again, we may abuse notion by writing C − = L ⊂ B. We refer readers interested in a fuller
development of branched surfaces to [Le ].

A primary use of branched surfaces is their “book-keeping” function for carrying embed-
ded surfaces in a fibered neighborhood—surfaces that correspond to assigning non-negative
weights to the components of B \L . (Again, see [Le ] for a detailed treatment.)

For B in our setting, there is a natural way to see the embedding of the components,
{K̄1, · · · , K̄l} ⊂ Sg, “carried” by B if we allow both ∂B and L to serve as boundary. To
start, it is natural to decompose the K̄i

′s into two sets. Recall that each K̄i inherits a normal
vector field coming from the outward pointing normal of MS. As such, for a given open Ki,
its normal vectors project onto λj, where j is the positively oriented unit associated with the
z-axis—the R factor of R2 × R. Let K+ (respectively, K−) be the sub-collection of K̄i

′s for
which λ > 0 (respectively, λ < 0).

With the above in place the reader should observe that a weight assignment of +1 to each
component of B \L corresponds to B carrying either K+ or K−. Specifically, in Fig. 19 we
locally depict how K+ or K− are configured near ∂B and L . The reader should observe that
we treat L as lying in the boundary of the resulting surface, so that the weighting satisfies
the branching equations.

6.2. Regular isotopies and the branched surface. Given a regular isotopy, εt : S ↪→
R2 × R, 0 ≤ t ≤ 1, there is an associated family of branched surfaces ε̄t(S) = qεt ◦ εt(S),
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K+ K−

Figure 19. The branched surface carries Sg by splitting appropriately at L .

0 ≤ t ≤ 1. When all self-intersections of qεt ◦ εt(C ) are transverse, the topological type of
ε̄t(S) is fixed, so ε̄t is an isotopy of the associated branched surface B such that all points
of π(B \ (∂B t L )) are regular values; in this case we abuse notation and write simply
ε̄t(B). To account for those isolated values of t ∈ [0, 1] where qεt ◦ εt(C ) has non-transverse
intersections, we expand the meaning of a regular isotopy ε̄t of B to include two classical
operations on branched surfaces, pinching and its inverse splitting. Fig. 20 depicts these local
operations along a neighborhood of the branching locus, L ⊂ B. Both operations can result
in the introduction or removal of double points.

Figure 20. A regular isotopy of ε(S) which descends to a pinching move on B.

6.2.1. Boundary based isotopies. One primary source of regular isotopies comes from moving
∂B along a portion of intB. Specifically, we say R ⊂ B \L is a boundary annular region if
R is an annulus such that ∂R = a ∪ b with a ⊂ ∂B and b ⊂ intB \L . We say R ⊂ B \L
is a boundary half-disk if ∂R = a ∪ b where a ⊂ ∂B is an arc and b ⊂ B \L is a properly
embedded arc—∂b = ∂a ⊂ ∂B—and (∂B \ int a) ∪ b is a smooth 1-manifold. We then have
the following lemma.
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Lemma 6.2. Let R ⊂ B \L be either a boundary annular region or a boundary half-disk
region. Then there is a regular isotopy ε̄t(B), 0 ≤ t ≤ 1, such that R ∩ ε̄1(B) = b and
ε̄t(B \R) = id, 0 ≤ t ≤ 1.

Proof. Let φt, 0 ≤ t ≤ 1, be an smooth flow coming from extending the inward pointing
normal vector field along a (⊂ ∂R) to all of R such that along b the vector field is an outward
(with respect to R) pointing normal. Viewing R ∼= a× [0, 1], with a× {1} identified with a,
we take ε̄t(B) to be φt(a, s)s on R and ε̄t(B \R) ∼= id, 0 ≤ t ≤ 1. �

6.2.2. Pinching and double-cusp disks. Next, we develop the tools for pinching a branched
surface B. This pinching will correspond to a regular isotopy of the embedding ε, thus
preserving C − (which corresponds to L ) and C + (which corresponds to ∂B). Let d+, d− ⊂ B
be two simple arcs such that:

• int d± ⊂ K±;
• ∂d+ = ∂d− = d+ ∩ d− ⊂ L ; and,
• π(d+) = π(d−).

Then d+∪d− bounds a double cusp disk, D, for which π(D) = π(d±). Necessarily, ∂D∩L
will contain the two cusp points of d+ ∩ d− (along with all points of int d± ∩L ).

The double cusp disks that will be of interest to us are ones that are associated with a
pinching 3-ball. Specifically, suppose d± ⊂ K± split off disks δ± ⊂ K± such that

Σ = D ∪ δ+ ∪ δ−

is a 2-sphere bounding a 3-ball, BΣ. To parse out the gluing: D and δ+ are glued along
d+; D and δ+ are glued along d+; and, δ+ and δ− are glued along a segment ` ⊂ L for
which ∂` = ∂d+ = ∂d−. We observe that π(BΣ) = π(δ+) = π(δ−). As such, for any point
p ∈ π(BΣ) the segment components of its pre-image give us an I-bundle structure for BΣ.
Specifically,

BΣ =
⊔

t∈[−1,1]

Dt,

where
• D−1 = δ+ and D1 = δ−;
• for all t ∈ [−1, 1], π(Dt) = π(δ±);
• for all t ∈ [−1, 1] and any p ∈ intDt, dπp : TpDt → R2 is an isomorphism;
• for all t ∈ [−1, 1], ∂Dt = ` ∪ dt where dt ⊂ D; and
• D =

⊔
t∈[−1,1] dt with d−1 = d+ and d1 = d−.

Observe that when int D ∩ B = ∅, then intBΣ ∩ B = ∅. We can then use the I-bundle
structure of BΣ to pinch B along `, with the isotopy moving ` through the disk δ+ (⊂ BΣ)
to the arc d+ (⊂ D).

When we utilize the above pinching procedure in §7 , we will be concerned with, first,
identifying such double-cusp disks and, second, ensuring that an associated intBΣ has empty
intersection with B. We return to this second point in §6.2.4 .

6.2.3. Pinching and ∂-close branching locus segments. For a given, ε : Sg → R2 × R, and
associated branched surface, B, let ` ⊂ L be a closed segment with ∂` = {p1, p1}. Let R ⊂
K+ or K− be a rectangular region (for simplicity, we take R ⊂ K+), with ∂R = `∪r1∪b∪r2

where:
• ri, i ∈ {0, 1}, are arcs in K+;
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• b = R ∩ ∂B ⊂ K+ is a segment with ∂b = {q1, q2};
• ri is glued to ` at pi, i ∈ {0, 1}; and
• ri is glued to b at qi, i ∈ {0, 1}.

We say ` (⊂ L ) is ∂-close with respect toK+, or just ∂-close, if R exists such that intR∩L =
∅.

Similarly, let ` ⊂ L be a circle component. Let ` ⊂ ∂K̄ where K̄ ⊂ K+ or K− is an
annulus. If int K̄ ∩L = ∅ then we say ` is ∂-close with respect to K+, or just ∂-close.

The salient feature of ∂-close is, in the annular case, we have a regular isotopy (by Lemma
6.2 ) that positions K̄ ∩ ∂B arbitrarily close to `. In the case where R is a rectangular region
we can take a half-disk, R′ ⊂ R, for which ∂R′ \ b is arbitrarily close to r1 ∪ `∪ r2. Then an
application of Lemma 6.2 to R′ positions ∂B arbitrarily close to `.

`

R

Figure 21. Pinching along a portion of R to remove two double points along the
green ∂-close arc `.

Now, let R ⊂ K̄ (⊂ K±) be either a disk or an annulus. Suppose R is an annulus with
∂R = ` ∪ b, where ` ⊂ L is a circle component and b ⊂ int K̄; we say R is an L -annulus.
For R a disk, suppose we may write ∂R = ` ∪ b where ` ⊂ ∂L is an segment and b ⊂ K̄
is a properly embedded arc—∂b = ∂` ⊂ ∂L—and moreover, (L \ int `) ∪ b is a smooth
1-manifold. Then we say R is an L -disk. We then have the following lemma.

Lemma 6.3. Let R ⊂ K̄ (⊂ K±) be either an L -annulus or L -disk. Let ` ⊂ ∂R be its
associated boundary circle or segment in L . If ` is ∂-close with respect to K∓ then we can
pinch B along ` so as to replace ` in L with b. (See Fig. 21 .)

Proof. For simplicity of notation, assume ` ⊂ K̄ ⊂ K+. Then ` is ∂-close with respect to
K− and we can perform a regular isotopy of B such that ` is arbitrarily close to either a
component of ∂B (when R is an annulus) or a segment of ∂B (when R is a disk). We can
then pinch L through R and extend the isotopy to the portion of K− that is close to `;
importantly, since this is an arbitrarily small strip of K−, we do not need to worry about
interactions with the remainder of B. Fig. 21 illustrates the pinching operation. �

6.2.4. Emptying out a BΣ ball. The final operation we now discuss will allow us to assume
that the interior of the BΣ 3-balls introduced in §6.2.2 have empty intersection with B. In
that discussion we were given a double cusp disk, D, and we assumed that there was an
associated pinching 3-ball. If we restrict to embeddings of 2-spheres, then the bounded
component of R2×R \ (ε(S2)∪D) is always a 3-ball. When we consider the situation where
C has only three components, as we will in §6 , the condition that π(BΣ) = π(δ+) = π(δ−)
will be almost immediate. As such, we have the following lemma.

Lemma 6.4. Let BΣ be a pinching 3-ball as described in §6.2.2 . Let D be the associated
double cusp disk and Σ be the associated 2-sphere. Then by a regular isotopy of B we can
assume that intBΣ ∩ B = ∅.
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Proof. As a technical point we take an small collar neighborhood of N(D) = D × (−ε, ε)
where N(D) ∩ BΣ is supported only over the [0, ε) interval. We then extend the Dt-disk
bundle structure of BΣ to B′ = BΣ ∪N(D). We will use the notation

B′ =
⊔

t∈[−1,1]

D′t

for the resulting bundle structure. Similarly extending the notation of §6.2.2 , we have ∂D′t =
`′ ∪ d′t where ` ⊂ `′ ⊂ L—an extension of `—and d′t ⊂ D × {−1}.

Then we choose a non-zero vector field flow, φs, s ∈ (−1, 1), on intB′ such that each
restricted flow φs|intD′t

, t ∈ [−1, 1] has an extension to a flow φs,t such that on `′, φs,t is an
inward pointing normal vector field and on d′t, it is an outward pointing normal vector field.

With this setup, we use φs to perform a smooth isotopy moving B ∩ intBΣ to lie in the
(−ε, 0) interval support of N(D). Such a isotopy will necessarily preserve the regular points
of π : B → R2. �

7. Classification of S2 embeddings when |C | = 3

In this section we give the classification of isotopy classes of regular embeddings of S2 into
R2 × R having C = {γi, γm, γo}—three smooth curves without corners. Seemingly a simple
case, we will see that the subtleties of what can occur are instructive for what may happen
in the general setting.

To begin, it is readily seen that there are topologically two possible configurations of three
disjoint curves on S2: one where the curves split S2 into three disks plus a pair-of-pants;
and, one where the curves split S2 into two disks and two annuli. The former case is not
allowable since, as previously observed, there is no Gauss-Bonnet weighting of C . For the
latter case, we let γi and γo (“i” for “inner” and “o” for “outer”) be the two curves bounding
disks ∆i and ∆o, respectively. Since both curves bound disks, by Proposition 4.1 , their
Gauss-Bonnet weightings most both be +1. Additionally, we let γm (“m” for “middle”) be
the curve that co-bounds an annulus, Ai,m, with γi and co-bounds an annulus Ao,m, with γo.
Again, applying Proposition 4.1 we have −1 for the Gauss-Bonnet weight for γm.

Theorem 7.1. Let ε : S2 ↪→ R2 × R be a regular embedding such that the crease set C has
three components with no corners. Then ε(S2) is regularly isotopic to one of the following, up
to the obvious (reflection) symmetries: the “saucer” (Fig. 22a ), the “mushroom” (Fig. 22b ),
or the “toric” sphere (Fig. 22c ).

To be precise about the meaning of obvious symmetry, we allow pre-composition by a
homeomorphism of pairs h : (S2,C ) → (S2,C ) and post-composition by an isometry i :
R2 × R→ R2 × R satisfying π ◦ i = i|R2×{0} ◦ π. For instance, the saucer and its reflection
through the R2×{0}-plane are not regularly isotopic, but are related by an obvious symmetry.

7.1. Proof approach. As remarked earlier, the folding data of the crease set are a regular
isotopy invariant. Theorem 7.1 may be understood as saying that in the case |C | = 3, this is
a complete invariant—at most one isotopy class occurs per folding direction assignment—and
only three folding direction assignments actually occur.

Initially the number of possible assignments for the folding signs is 2|C | = 23. However,
since ∂B 6= ∅ and ∂B corresponds to C +, some component of C must be a + crease.
Similarly, if there is no − crease, then L = ∅ and B is in fact an embedded planar surface
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(a) Saucer. (b) Mushroom. (c) Toric.

Figure 22. Model representatives of the three regular isotopy classes of embeddings
of S2 with three corner-less crease curves. The toric sphere is realized as a plumbing
of two saucer spheres.

with boundary. Since B must carry ε(S2), B is necessarily a disk. But, then |C | = 1, not 3,
a contradiction. Thus, both C + and C − are nonempty.

Next we observe that we can interchange of roles of γi and γo, an allowed symmetry. This
leaves us with four bijective maps of ordered sets that correspond to a folding assignment.

i. f1 : [γi, γm, γo]←→ [+,+,−].
ii. f2 : [γi, γm, γo]←→ [+,−,+].
iii. f3 : [γi, γm, γo]←→ [−,+,−].
iv. f4 : [γi, γm, γo]←→ [+,−,−].

Lemma 7.2. The folding assignment f4 cannot occur.

Proof. Suppose ε : S2 → R2 × R realizes this folding assignment. Observe that γi, as the
single crease curve with positive folding, bounds an embedded disk ∆ in B, and moreover
∂B = ∂∆. Then B \ ∆ is a branched subsurface of B. The boundary of B \ ∆ is precisely
L ∩∆. In particular, since ∆ is a disk, every loop ` ⊂ ∂(B\∆) can be realized as the image
of the boundary of some map f : D2 → ∆.

Suppose ` is homotopically nontrivial in ∂(B \ ∆). If ` is nullhomotopic in B \ ∆, then
there is a second map f ′ : D2 → B \∆ mapping the boundary to `. Together these two
maps define f ∪ f ′ : S2 → B, which is evidently non-nullhomotopic.

If ` is essential in B\∆, it is homotopic to another loop `′ ⊂ ∂(B\∆). Let g : S1× [0, 1]→
B \∆ realize this homotopy. We also have f ′ : D2 → ∆ mapping ∂D2 to `′ ⊂ ∆. Then
f ∪ g ∪ f ′ : S2 → B represents a nontrivial class in π2(B).

Since B is the quotient of a 3-ball, B is contractible. However, we have shown π2(B) 6= 1,
a contradiction. �

Our approach to proving Theorem 7.1 is to show, in each of the remaining three cases of
folding assignments, the branched surface associated to any embedding with given folding
data may be taken by a regular isotopy to one of the following three models.

Saucer–folding assignment f1 : [γi, γm, γo]←→ [+,+,−]. The branched surface model asso-
ciated with the saucer embedding has π ◦ ε(γi t γm t γo) (= π(∂BtL )) as three concentric
circles in R2 with π ◦ ε(γi) the largest radius and π ◦ ε(γm) the smallest radius.
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We take K+ to be the images of {Ai,m,∆o} and for convenience of notation relabel their
images {A+,∆+} ⊂ B, respectively. Similarly, we take K− to be the images of {Am,i,∆i}
and relabel their images {A−,∆−} ⊂ B, respectively. To satisfy the folding assignment, we
take the z-support of A+ and ∆± in R2 × R to be {0}, and the z-support of intA− to be
(0, 1

2
).

Mushroom–folding assignment f2 : [γi, γm, γo] ←→ [+,−,+]. The branched surface model
associated with the mushroom embedding will have π ◦ ε(γi t γm t γo) = π(∂B tL ) ⊂ R2

again be three concentric circles with π ◦ ε(γi) the largest radius and π ◦ ε(γm) the smallest
radius.

We take K+ to be the images of {Ai,m,∆o} and relabel their images {A+,∆+} ⊂ B,
respectively. Similarly, we take K− to be the images of {Am,i,∆i} and relabel their images
{A−,∆−} ⊂ B, respectively. Again, in order to satisfy the folding assignment, we take the
z-support of A+ and ∆− to be {0}, and the z-support of intA− to be (0, 1

2
).

Toric–folding assignment f3 : [γi, γm, γo] ←→ [−,+,−]. To construct the branched surface
model associated with this toric embedding, we start with S1 ∨ S1 ⊂ R2 × R such that
π(S1∨S1) ⊂ R2 looks like the standard two crossing projection of the Hopf link except that
one crossing is now the common point of the wedge sum; this choice, as well as the choice
of over-strand for the intact crossing, is a matter of symmetry. Next, let T ⊂ R2 × R be a
torus-minus-open-disk which contains and deformation retracts onto our S1 ∨ S1. Further,
we require that π(intT ) ⊂ R2 be an immersion. Then, adapting Proposition 4.1 , observe
the turning number of ∂T must be −1. As such we let ∂T = ε(γm). Finally, to construct our
B, we attach to T two disks, ∆+ and ∆−, one along each of the S1′s in our wedge sum, so
that π(∆±) ⊂ R2 is an embedding. To specify, we identify ∂∆+ (respectively, ∂∆−) with the
under-crossing (respectively, over-crossing) S1-factor of the remaining crossing in the Hopf
link projection. From this construction we have that ∂∆+ and ∂∆− are the images of γi and
γo in B. The boundary and branch locus of B are shown in Fig. 23 .

Figure 23. The crease set of a toric sphere as identified in the branched surface.
The green C− curves have been identified at a single point in L .

Summary of the 3 models. We summarize the “geography” of each of our three models.
Referring back to Fig. 19 , a choice of splitting into K+ or K− produces a 2-disk and an annu-
lus, independent of model. A salient feature of any such splitting will be the “membership”
of the boundary components of the resulting disk/annulus pair—a boundary component
will either come from a component of ∂B or a component of L . Table 1 categorizes the
membership of each possible K± surface. Superscripts of ± correspond to the superscripts
associated with the splitting and superscripts, where used, correspond to the membership of
the boundary component.
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Table 1. Geography of the three models.

K± f1 (saucer) f2 (mushroom) f3 (toric)

∆+ ∂∆+ ⊂ L ∂∆+ ⊂ ∂B ∂∆+ ⊂ L
A− ∂A− = ∂−B ∪ ∂

−
L ∂A− = ∂−B ∪ ∂

−
L ∂A− = ∂−B ∪ ∂

−
L

A+ ∂A+ ⊂ ∂B ∂A+ = ∂+
B ∪ ∂

+
L ∂A+ = ∂+

B ∪ ∂
+
L

∆− ∂∆− ⊂ ∂B ∂∆− ⊂ ∂B ∂∆− ⊂ L

7.2. Proof of Theorem 1.4 . We will establish that any regular embedding ε(S2) with
|C | = 3 is regular isotopic to either the saucer, mushroom, or toric embedding (up to
symmetry) by showing its associated branched surface, B ⊂ R2×R, is equivalent to one of our
three model branched surfaces through a sequence of boundary-based regular isotopies (see
§6.2.1 ), ∂-close pinching (see §6.2.3 ), and pinching double-cusp disks (see §6.2.2 ). Applying
appropriate symmetries, we make the following assumptions on a given embedding to match
our models: in all cases, ∆i will always correspond to ∆−; any f1-folding embedding will
have ∂∆+ ⊂ L ; and, in any f3-folding embedding, the signed intersection number of the
image in B of the ordered pair (γi.γo) is −1.

To give justification for why, in an f3-folding, L must always contain at least one double
point, we consider the surface with boundary T = B \ {int ∆+ ∪ int ∆−}. Since ∂T = ∂B,
the turning number of its boundary is −1. Moreover, since every point in intT is regular
with respect to π : T → R2, the crease set of T is empty. Thus, T is a torus minus a disk.
But, the two components of L are naturally contained in intT as homotopically non-trivial
curves, with each component bounding an embedded disk—the disks ∆±. Such curves will
have algebraic intersection ±1.

To power our argument we first define a complexity measure. The setup is as follows.
When ε(S2) is associated with the f1 folding assignment, we let X = {A−,∆+}. For folding
assignment f2, we let X = {A+, A−}. And, for f3 we let X = {A+, A−,∆+,∆−}. In each
case, X is comprised of those components with some boundary component in L .

With this in place, we consider the graph G =
⊔
X∈XX ∩L , where X ∈ X is a single

component. (We allow for the possibility that G has S1-“edges”, which occur as isolated
components of G; these occur when some component of L has no double points.) Let
D(L ) denote the set of double points of L and VG the vertex set of L . Each v ∈ VG
corresponds to a point of D(L ), and by our choices of X, any double points of L will be
captured as vertices in G. Referring back to Fig. 18 and 19 , observe that each component
of L \ D(L ) appears as an edge at most four times in G while each double point of L
appears as a vertex at most six times in G. Both bounds are realized when considering all
four components of K±.

For a component X ∈ X, we say a vertex v ∈ VG ∩ ∂X is ∂-close in X if there exists a
segment neighborhood, ` ⊂ ∂X ∩L , such that v ∈ ` and ` is ∂-close as defined in §6.2.3 .
Let N2 be the number of vertices of VG that are ∂-close in some component of X and N1

the number of vertices of VG which are not. Then our complexity measure for a branched
surface, B ⊂ R2 × R, is the lexicographically ordered 2-tuple, χ(B) = (N1, N2).

Since D(L ) = ∅ for our saucer and mushroom standard branched surface models, the
minimal possible complexity for folding assignments f1 and f2 is (0, 0) with G = ∂X ∩L .
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The complexity for the toric model is (6, 0), which we calculate for each component of X
as follows. ∆± ∩ L is just the ∂∆± with each containing a single vertex of G and, since
∆± ∩ ∂B = ∅, these single vertices will not be ∂-close in D±. A± ∩L will be subgraphs
having three edges, e±1 , e

±
2 , e

±
3 and two vertices, v±1 , v

±
2 , with: e

±
1 ∪ v±1 = ∂A± ∩L , e±2 ∪ v±2

a loop bounding a disk in intA±, and e±3 having endpoints v±1 and v±2 . As such, v±1 and v±2
are not ∂-close in A±.

This is indeed the minimum possible complexity for f3, as there must be at least one
double point in L , which is necessarily not ∂-close anywhere it appears in G.

We note that the subgraphs in A± in the toric model are informative. Having an edge
loop in G implies that the number of components of L is greater than 1. Similarly, having
e±3 as “cut” edges implies that |L | ≥ 1—e±3 share a vertex with e±1 and e±2 so in the quotient
they cannot be identified with either edge.

Case 1: χ(B) is minimal. For the all three folding assignments, we can perform a boundary
based isotopy that positions ∂B arbitrarily close to L .

For the saucer and mushroom cases, we pick a point p in the interior of the disk com-
ponent of B \ L . We can then choose a small enough neighborhood, N(p), such that
Cr = π(∂N(p)) ⊂ R2 × {0} is circle of some fixed radius.

Now, pick a vector flow on the closure of disk component of B \L that flows inward from
L to Cr. We then use this flow to isotopy the neighborhood of L that contains the annular
components of B\L to a neighborhood of Cr. After this isotopy we will have the projection
of the resultant branched surface, π(B′), be one that corresponds the that of our saucer or
mushroom models. That is, π(∂B′ tL ) will correspond to three concentric circles. We can
then employ a linear isotopy that positions B′ so as to satisfy the z-support conditions of our
saucer and mushroom models. If ∆− projects to π(∆−) with ∂π(∆−) being the outermost
concentric circle, point-wise we could use Ht(p) = (1 − t)[p] + t[π(p)], p ∈ ∆−, 0 ≤ t ≤ 1,
and extend to the rest of B′. Being linear, it is evident that dHt : TpB′ → R2, 0 ≤ t ≤ 1 is
an isomorphism on p ∈ B \ ∂B.

For the toric case we pick two arbitrarily small circles S+ ⊂ ∆+ and S− ⊂ ∆− such that
S+ ∩ S− = D(L ) and π(S1 ∪ S2) corresponds to a “nice Hopf link” projection with a wedge
point and a single crossing point.

Next, we choose vectors flows on ∆± that flow inward from ∂∆± (⊂ L ) to S±. We
use these two flows to perform an isotopy moving L to S+ ∪ S−. This isotopy extends
to one moving the neighborhood of L containing the annular component of B \ L to a
small neighborhood of S+ ∪ S−. This describes a regular isotopy of B to B′ such that the
associated branching locus, L ′, has a nice Hopf link type projection. Finally, let T ′ =
B′ \ (int ∆′+ ∪ int ∆′−. (Here we are extending the “prime” notation to all of the component
pieces of B′.) As in the saucer and mushroom cases, we can use a linear isotopy as a regular
isotopy to take T ′ to the T of the toric model, extending to take B′ to the toric model B.

Case 2: χ(B) is not minimal. Consider an arc ` ⊂ C − whose image connects two double
points of L , or ` an entire component of C −. By our definition of X there will be two
components, X+, X− ∈ X such that ` ⊂ ∂X± ∩L . (By way of example, in the mushroom
case we necessarily have ` ⊂ ∂A+ ∩L and ` ⊂ ∂A− ∩L .) Let v±1 , . . . , v±n ∈ ∂X± ∩ VG be
those vertices which lie along ` in X±. If one or both of X± is annular, then there is the
possibility that ` is ∂-close in that component—though by the assumption that ` has double
points, it cannot be ∂-close in both. We break into two cases: when ` is ∂-close in one of
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X±, and when ` is not ∂-close in either. These correspond exactly to when we can use each
of the pinching moves discussed in §6.2 .

Pinching ∂-close as in §6.2.3 . Suppose that ` is ∂-close in, say, X+, but not in X−—there
exists a connected subgraph, J ⊂ G, such that J∩∂X− = {v−1 , . . . , v−n } and either X− = ∆−

or J ∩ intX− is nonempty. We further suppose J ∩ intX− is connected, possibly by passing
to a subarc of `, and that ` is maximal in the sense that either G ∩ X− \ {v−1 , v−n } is
disconnected or ` ∼= S1. Then a neighborhood R(J) ⊂ X− defines either an L -disk or L -
annulus. We then perform the pinching procedure of §6.2.3 , replacing B with the resulting
B′. This eliminates the 2n points v±1 , . . . , v±n from D(L ), reducing N1 and N2 each by n.
Other points of D(L ) may become ∂-close (decreasing N1 while increasing N2). However,
the conditions on ` guarantee no new double points are introduced, and any ∂-close double
point is either eliminated or stays ∂-close. As a result, χ(B′) ≤ χ(B). This same operation
may be performed with X+ and X− interchanged, so that ` is ∂-close in X− and not in X+.

Pinching double-cusp disks as in §6.2.2 . Now we assume that ` is not ∂-close in either X+

or X−. Similar to before, we assume ` is maximal in the sense that either G∩X± \ {v±1 , v±n }
are both disconnected or ` ∼= S1, and that no subarc of ` is maximal.

The reader should observe that if there is no such `, either every double point of L is ∂-
close and we can always apply the pinching procedure of §6.2.3 to eliminate points in D(L ),
or there is a single point p ∈ D(L ) which is not ∂-close in either X±—the toric case. In
either case, if L has at least two double points, some pair must be connected by a ∂-close
arc.

Suppose ` ⊂ L is such a maximal arc. Let J± ⊂ G be connected subgraphs such that
J± \ ` ⊂ intX± and J± ∩ ∂X± = `. At least one of J± must contain an edge outside of `.

Next, using the product structure of our space, R2 × R, we project J+ (respectively, J−)
onto X− (respectively, X+). Let πX±(J∓) ∪ J± ⊂ X± denote the resulting graphs, taking
the (transverse) intersections of πX±(J∓) ∪ J± as additional vertices. Observe that

π(πX+(J−) ∪ J+) = π(πX−(J+) ∪ J−).

Now, let E+ ⊂ πX+(J−) ∪ J+ ⊂ X+ be a simple edge-path that starts and ends in
` ⊂ ∂X± with intE+ ⊂ intX+. From the common projection, we can lift a dual edge-path
E− ⊂ πX−(J+) ∪ J− ⊂ X− such that π(E+) = π(E−). Thus, E+ ∪ E− is the boundary of
a double-cusp disk, D. We then take δ± to be the half-disks that E± split off in X±. Thus,
we have the setup for Lemma 6.4 and can now assume int D ∩B = ∅. With this assumption
in place we can performing the pinching procedure described in §6.2.2 .

In the resulting branched surface, B′, we have reduced N1, so χ(B′) < χ(B). We caution
the reader that a decrease in N1 may result in an increase in N2. However, the combined
procedures of §6.2.3 and §6.2.2 will always terminate, at which point either |D(L )| = 0—the
saucer and mushroom—or D(L ) = 1—the toric case. We are then in the case where χ(B)
is minimal.

Example 7.3 (Mushroom with five double points). It is helpful to see how the argument of
§7.2 can be carried out in actual examples. In Fig. 24a , we offer an example of a branched
surface that is equivalent to that of a mushroom S2 embedding. There are five double
points in the branching locus. We draw the reader’s attention to the green curve, the unique
component of L . We have marked a point with “×”. Starting at this point one can produce
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a “Gaussian notation” sequence by labeling the double points as they are encountered when
traversing the L . Specifically, we have the numeric sequence

×, 1, 2, 3, 3, 4, 2, 5, 5, 4, 1,×.
We also draw the reader’s attention to a single crossing in the projection of L which does
not make a contribution to this numeric sequence.

To finish out the narrative for Fig. 24a , ∂B consists of the two blue curves. The light-blue
“train-tracks” illustrate how B branches at L . And the regions with the light-blue swirls
correspond to portions of ∆+. Here ∆− is not visible, as it is the underside of this depiction
of B.

1

2

3

4
5

×

(a) Top-down view of B.

1 2

4

3

3

4
25

4

5

1

2

∂D

A+A−

×

(b) The graph G in A+ ∪A−.

Figure 24. A mushroom-type branched surface B and its associated graph G. The
green curve corresponds to L and the blue curves correspond to the two components
of ∂B. The three “swirling” regions of B lie in ∆+. The dotted loop on the right is
the boundary of a double-cusp disk.

Fig. 24b depicts A+ and A−, which areX+ andX− in the mushroom case. For convenience,
we adjoin them together along their common branching boundary component—the core green
circle. Note that the vertices along this curve appear twice in G—once in the A+ component
and once in the A− component. In intA+ and intA−, we have the subgraphs of G arising
from A+ ∩L and A− ∩L , respectively.

Initially, χ(B) = (14, 8). To see this with respect to A+, when we traverse counterclockwise
the core green circle—∂A+ ∩L—starting at the ×-point, the first occurrences of 1, 2, 3, 4,
and 5 are not ∂-close. Additionally, the second occurrence of 2 and the interior vertex 4 are
not ∂-close. However, the second occurrences of 3, 5, 4, and 1 are all ∂-close. Thus, A+ ∩G
contributes a count of 7 to N1 and 4 to N2.

Replicating this count with respect to A−, the second occurrences of 3, 2, 5, 4, and 1
along with the first occurrence of 4 and the interior 2-vertex are not ∂-close. But, the first
occurrences of 1, 2, 3, and 5 are all ∂-close. Thus, A− ∩G also contributes 7 to N1 and 4 to
N2.

We have a number of ways to use subgraphs to eliminate double points of L , thereby
reducing χ(B). We refer the reader to Fig. 24b . To perform a ∂-close pinching, we consider
the subgraph J+ that consists the vertex labeled 4 in intA+, its three adjacent vertices on the
green core circle, that in our numeric sequence correspond to ×, 1, 2, 3, and their adjoining
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edges. With respect to A−, the arc through the vertices in the same partial numeric sequence,
×, 1, 2, 3, is ∂-close. Then we take a neighborhood N(J+) ⊂ A+ as the needed L -disk to
perform a ∂-close pinching. There is a similar possible ∂-close pinching coming from the
subgraph J− ⊂ A− containing the 2-labeled vertex in intA−, its three adjacent vertices in
∂A−, and their adjoining edges.

Performing the ∂-close pinching associated with the above J+ eliminates the double points
1, 2, and 3, leaving two double points, 4 and 5. The resulting numeric sequence for the new
branched surface, B′, is

×, 4, 5, 5, 4,×.
Specifically, the first occurrences of 4 and 5 are ∂-close with respect to A−, but the second
occurrences of 5 and 4 are not. This pattern flips with respect to A+—the first occurrences
of 4 and 5 are not ∂-close with respect to A+, but the second occurrences of 5 and 4 will be.
Thus, the new complexity measure is χ(B′) = (4, 4).

Alternatively, the arc ` ⊂ L containing the subsequence 3, 4, 2, 5 is not ∂-close in either
A+ or A−, as it cannot be entirely “seen” from A+ ∩ ∂B or A− ∩ ∂B. So one can employ
pinching. To do so, we first identify the boundary of a double-cusp disk.

To obtain J−, we add to ` ⊂ A− the edge in intA− with endpoints 4 and 5, and to obtain
J+, we take ` ⊂ A+ and the edge in intA+ with endpoints 3 and 2. We then project J− into
A+ and J+ into A−. The dotted loop ∂D, shown in Fig. 24b , is a boundary of the required
double cusp disk. The “rectangular” region ∂D bounds corresponds to d+ ∪ d−. Performing
the associated pinching will increase |D(L )| from 5 to 6.

To see this move in Fig. 24a , the reader should imagine sliding the 2-labeled double point
along L towards-and-past the double point labeled 4. This will create two new double
points, one in the 14 segment of L—label it 6—and another in the 43 segment—label it 7.
In Fig. 24b , this slide corresponds to shrinking all three edges having point labels (2, 4). In
the resulting branched surface, we drop the use of 2 as a double point label, yielding the
numeric sequence,

×, 1, 6, 7, 3, 3, 7, 4, 5, 5, 4, 6, 1,×.
To focus on the complexity change, N1 drops from 14 to 12 while N2 increases from 8 to 12.

Thus, the complexity will be reduced since lexicographically, (12, 12) < (14, 8). Moreover,
every subgraph of intA± ∩ G will be associated with a ∂-close pinching. Specifically, the
reader can check that in intA+ ∩ L , there will be three edges with endpoint pairs (1, 6),
(7, 3), and (4, 5); and in intA− ∩ L , there will be three edges with endpoint pairs (3, 7),
(5, 4) and (6, 1)—all outermost edges in their respective annuli.

8. Possible isotopy classes of ε(S2) for |C | = 5.

We expect such a classification to become much more difficult as the number of crease
curves increases. As an illustration of the variety of behavior that might arise, we examine
one of the configurations consisting of five curves. In this configuration, shown in Fig. 25 ,
four of the curves bound disks in S2, while the fifth curve has turning number −3.

We begin by considering which crease sign assignments are realizable. Drawing a parallel to
the three-curve case, we might hope each choice of sign assignment for the four disk-bounding
curves determines that of the fifth, −3-turning number curve, and in turn a unique regular
isotopy class of embedding.

To explore this, we introduce a method for constructing embeddings.
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γ1

γ2

γ3

γ4

γ5

Figure 25. The five-crease configuration under discussion.

Definition 8.1. Let ε, ε′ : S2 → R2 × R be normal embeddings with smooth crease sets C
and C ′, and fix curves γ ∈ C , γ′ ∈ C such that at least one of γ, γ′ has positive crease sign.
Let ∆,∆′ ⊂ S2 be disks such that ∆ ∩ C ⊂ γ and ∆′ ∩ C ′ ⊂ γ′. Then the connect sum
ε#γ#γ′ε

′ of ε and ε′ along γ and γ′ is the embedding formed by taking a smooth connect
sum of ε(S2) and ε′(S2) along ε(∆) and ε′(∆′).

It is straightforward to see that, up to regular isotopy, the resulting embedding is well-
defined and determined by the choice of curves γ and γ′. The crease sign condition on γ and
γ′ is necessary for the result to be an embedding: if, say, γ has negative folding, in order to
create a smooth connect sum, the ε′ factor must lie inside the ball bound by ε. The crease
signs of the resulting embedding depend on the crease signs of γ and γ as well, in that if,
say, γ has negative folding, γ#γ′ will have negative sign, the other curves of C will remain
unchanged, but the signs of all other curves of C ′ will flip.

Returning to the five-curve configuration, this connect sum operation yields examples for
every choice of crease sign for the four disk-bounding curves, shown in part in Table 2 . The
unlisted assignments may be obtained through a symmetry of one of the connect sum factors
or the resulting embedding.

Table 2. Realizations of embeddings based on the crease signs of disk-bounding
curves, enumerated in the first four columns. The first factor in each sum corresponds
to γ1 and γ2; the second to γ3 and γ4. The last column indicates the crease sign of
γ5 in the given realization.

γ1 γ2 γ3 γ4 Realization γ5

+ + + + εM#εE −
− − − − εE#εE +
+ + ± ∓ εM#εS −
− − ± ∓ εS#εE +
± ∓ ± ∓ εS#εS −

Note that this construction leaves a gap: we only give an example for one of the two
possibilities for the crease sign of γ in each case. However, γ5’s sign is determined by those
of γ1, . . . , γ4 in rows 1-2 (since we must have at least one + and one − crease) and in row 4
(by the same proof as of Lemma 7.2 ). We do not know whether examples with the opposite
sign for γ5 exist for rows 3 and 5.

Moreover, it seems plausible that non-regularly isotopic embeddings may have the same
crease sign data, even accounting for further symmetry. Let ε̄E be the mirror image of εE
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through the R2-plane. Then εE#εE and εE#ε̄E have the same crease sign data, yet do not
seem to be regularly isotopic.

9. Open questions

Although there are large number of directions an investigation into the crease set could
take—for example, surfaces with boundary in R2×R—we supply only a few that immediately
come to mind for closed surfaces. The motivation of these problems is to advance the further
development of the machinery of §5 and §6 .

Problem 9.1 (Analyze the S2 crease set with corners). As previously mentioned, from §5 

onward our analysis deals with understanding the embeddings of S2 into R2 × R in the
situation where the crease set is without corners. An obvious direction of investigation is to
carry out a similar analysis in the situation where corners occurred. There should be some
interaction between this line of investigation and the one described in the previous sections.
In particular, referring back to Fig. 2 and the accompanying discussion, one sees that a pair
of “canceling corners” can be introduced by the creation of a dimple. Fig. 26 illustrates of
another method of adding/canceling corners to the crease set. The proposed problem is
to not only give a constructive procedure for the geometric realization of a crease set with
corners that satisfies a Gauss-Bonnet weighting criteria, but give a finite list of operations
for moving between embeddings.

Figure 26. The green curves represent C . The dashed arc between the corners in
the upper diagram gives a strip to perform a corner-canceling isotopy. The arc in
the lower diagram, at first flat, crosses the new crease set twice.

Problem 9.2 (Estimate the growth rate of embedding equivalence classes for S2). The
construction procedure for the geometric realization of a crease configuration given in §5 

clearly involves making a lot of choices. In §7 , we see there are exactly three non-isotopic
embeddings with the same crease configuration of three curves; in §8 we produce five with
a common crease configuration. It is reasonable to suspect this is the case in general, and
that a given crease configuration will have numerous geometric realizations. The proposed
problem is to calculate the grow rate of set of equivalency classes of embeddings for S2 or
any other closed orientable surface into R2 × R, as measured in comparison to the number
of crease curves and corners.
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Problem 9.3 (Analyze the crease set for embeddings of S1 × S1 ↪→ R2 × R). We restrict
our analysis here to embeddings of S2 ↪→ R2×R. It is natural to consider which phenomena
persist or collapse in positive genus. Moving just one step along this path, an investigation
of the crease set for embeddings ε : S1 × S1 ↪→ R2 × R might proceed as follows. Given a
configuration pair, (S1×S1,C ), whose closed components of S1×S1\C satisfy Equ. 4.2 , any
component of C is a s.c.c. of one of three types: (1) homologically trivial in S1 × S1; (2) a
curve that is the boundary of an embedded disk contained in the solid torus that ε(S1×S1)
bounds; or, (3) a longitudinal curve on ε(S1× S1). If ε(S1× S1) is unknotted then this last
type of curve may also bound an embedded disk. If type-(2) occurs then type-(3) cannot
occur and vice-versa. With this in mind, the proposed problem is to give a construction of
the embedding for geometrically realizing the crease set C ⊂ S1 × S1.

Problem 9.4 (Analyze the crease set for embeddings of S2 ↪→ R2×R2). It is very tempting
to push an analysis of the crease set into dimension 4. Since R4 has a natural product
structure of R2×R2, one would in fact have two crease configurations to work with—one for
each factor projection map. The obvious first interesting examples one might consider are
that of knotted 2-spheres.
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